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Abstract

In this paper, two related quotient structures are inves-
tigated utilizing the concept of coset. At first, a new
hypervector space F

V = (FV ,⊕,},K) is created, which is
composed of all cosets of a bipolar fuzzy soft set (F ,A)
over a hypervector space V. Then it will be shown that
dim F

V = dim V
W , where the quotient hypervector space

V
W includes all cosets of an especial subhyperspace W of
V. Also, three bipolar fuzzy soft sets over the quotient
hypervector space V

W are presented, and in this way, some
new bipolar fuzzy soft hypervector spaces are defined.
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1 Introduction

Zadeh [35] introduced fuzzy sets in 1965 as a way to represent objects with vague boundaries. Fuzzy
sets assign a membership value µ(x) in the range [0, 1] to each element x in set X , indicating the
degree of membership of x in X . Over time, variations of fuzzy sets have emerged, such as fuzzy
sets of type 2, L-fuzzy sets, interval-valued fuzzy sets, and intuitionistic fuzzy sets. While these
variations share some similarities, they also have distinct characteristics.

In 1994, Zhang [36] introduced bipolar fuzzy sets as a new extension of fuzzy sets and applied
them in decision analysis. Bipolar fuzzy sets have two membership degrees that represent the
satisfaction level for a property and its counter-property. The membership degrees of bipolar fuzzy
sets range from [−1, 1], with a membership degree of 0 indicating irrelevance with the corresponding
property. Membership degrees in the range (0, 1] indicate some degree of satisfaction with the
property, while membership degrees in the range [−1, 0) indicate some degree of satisfaction with
the implicit counter-property.

Molodtsov [25] introduced the concept of soft sets in 1999, as another mathematical tool for
modelling uncertainty. This concept gained traction in various fields, including algebraic structures.
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For instance, Maji [22] explored its application in decision-making problems, while Aktas [5], Acar
[3], and Sezgin [32] studied soft groups, soft rings, and soft vector spaces, respectively.

In 2011, Cogman [10] introduced a fuzzy soft set as a more precise modelling tool. In 2014,
Abdollah [1] combined the concepts of bipolar fuzzy sets and soft sets, giving rise to the concept
of bipolar fuzzy soft sets as a new generalization. Since then, this idea has been widely researched,
resulting in numerous published papers. For example, Akram [4] examined the applications of
bipolar fuzzy soft sets in K-algebras, Ali [6] utilized parameter reductions of bipolar fuzzy soft sets
to solve decision-making problems, Abughazalah [2] applied bipolar fuzzy sets in BCI-algebras,
and Riaz [29] discussed bipolar fuzzy soft topology in decision-making. Mahmood [23] introduced
the notion of bipolar complex fuzzy soft sets as a generalization of bipolar complex fuzzy sets and
soft sets. More recently, Khan [21] applied bipolar fuzzy soft matrices to solve decision-making
problems.

On the other hand, in 1934, Marty [24] introduced the theory of algebraic hyperstructures by
generalizing the notion of operation into hyperoperation. While an operation assigns a unique
element of a set to any two elements of the context set, a hyperoperation assigns a unique subset
of the set to any two elements. This theory has been extensively studied by researchers in various
branches, with references to books such as [11], [13], and [34]. The concept of hypervector space
was introduced by Scafati-Tallini [33] in 1990, and has since been investigated by Ameri [8], Sedghi
[31], and author [15].

These concepts have had an impact on algebraic hyperstructures (as detailed in the book [12]).
For example, Ameri [7] presented fuzzy hypervector spaces over valued fields in 2005, and studied
their properties in [9]. The author expanded on this work and explored additional properties of
fuzzy hypervector spaces in [16, 17]. Ranjbar [28] examined the properties of soft hypervector
spaces and fuzzy soft hypervector spaces, while the author [20] investigated results in soft hyper-
vector spaces. Norouzi [27] introduced new directions concerning soft hypermodules and soft fuzzy
hypermodules. Sarwar [30] applied bipolar fuzzy soft sets to hypergraphs, and Muhiuddin [26]
delved into the concept of bipolar-valued fuzzy soft hyper BCK-ideals.

Recently, the author [18, 19] applied the notion of bipolar fuzzy soft sets in hypervector spaces
and explored results pertaining to bipolar fuzzy soft hypervector spaces. In this paper, we build
upon the aforementioned studies and present new applications of bipolar fuzzy soft sets in hy-
pervector spaces. Section 2 reviews some fundamental concepts from references [18] and [19]. In
Section 3, we introduce the notion of bipolar fuzzy soft coset related to a bipolar fuzzy soft hyper-
vector space, resulting in a hypervector space F

V = (FV ,⊕,},K). We also establish a relationship
between the dimensions of F

V and V
W , where W is a specific subhyperspace of V. Additionally, we

examine the correspondence between bipolar fuzzy soft hypervector spaces of F
V and bipolar fuzzy

soft hypervector spaces of V. Section 4 focuses on the structure of the quotient hypervector space
V
W and defines bipolar fuzzy soft sets over V

W . Finally, in Section 5, we present ideas for future
research directions.

2 Preliminaries

In this section, we will provide definitions, theorems, and examples that are necessary for our
subsequent discussion. Most of the contents are from references [18] and [19].

Definition 2.1. [36] A bipolar fuzzy set on X can be defined as a mapping that assigns each
element x in X a pair of values (µ+

A(x), µ
−
A(x)), where µ+

A(x) represents the degree to which x
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satisfies the property and µ−
A(x) represents the degree to which x satisfies the counter-property, i.e.

A = {(x, µ+
A(x), µ

−
A(x)), x ∈ X}.

If the degree of positive satisfaction for A, denoted by µ+
A(x), is non-zero (µ+

A(x) ̸= 0) and
the degree of negative satisfaction for A, denoted by µ−

A(x), is zero (µ−
A(x) = 0), then it indicates

that x has only positive satisfaction for A. This means that x satisfies the property of A to some
degree but does not satisfy the counter-property of A.

On the other hand, if µ+
A(x) = 0 and µ−

A(x) ̸= 0, it means that x does not satisfy the property
of A, but it satisfies the counter-property of A. In this case, x does not exhibit positive satisfaction
for A, but it does exhibit negative satisfaction, indicating its compliance with the counter-property.

These scenarios illustrate the ability of bipolar fuzzy sets to capture degrees of satisfaction and
counter-satisfaction separately, allowing for a more nuanced representation of fuzzy and uncertain
information.

To simplify the representation, we can use the symbol A = (µ+
A, µ

−
A) or A = (A+,A−) to

denote a bipolar fuzzy set A.
For example, A = {(dragonfly, 0.3, 0), (mosquito, 1, 0), (turtle, 0, 0), (snake, 0,−1)} is a bipo-

lar fuzzy set which represents the fuzzy concept frog’s prey.

Definition 2.2. [25] Let U be a universe set, E be a set of parameters, P (U) be the power set of
U , and A be a subset of E. A soft set over U is defined as a pair (F ,A) where F : A → P (U) is
a mapping that assigns subsets of U to elements in A.

Definition 2.3. [1] Let U represent a set of elements, E represent a set of parameters, and A be a
subset of E. Then, the term “bipolar fuzzy soft set” refers to a pair (F ,A), where F is a function
mapping A to BFU (BFU represents the collection of all bipolar fuzzy sets over U), i.e.

∀e ∈ A; F(e) = {(x, µ+
F(e)(x), µ

−
F(e)(x)), x ∈ U}.

For any element e belonging to set A, F(e) refers to the collection of elements in the bipolar
fuzzy soft set (F ,A) that are approximately e. The degree to which an element x maintains
the parameter e is denoted as µ+

F(e)(x), while the degree to which it deviates from e is denoted as

µ−
F(e)(x). To simplify, we can represent F+

e (x) as µ+
F(e)(x) and F−

e (x) as µ−
F(e)(x). In simpler terms,

for any e in A, F(e) can be represented as Fe and is defined as the set of all (x,F+
e (x),F−

e (x)),
where x belongs to the universal set.

If (F ,A) and (G,B) are bipolar fuzzy soft sets over U , we can say that (F ,A) is considered a
bipolar fuzzy soft subset of (G,B) and it is denoted as (F ,A) ⊑ (G,B) if A ⊆ B and for all e ∈ A,

F+
e (x) ≤ G+

e (x), F−
e (x) ≥ G−

e (x), ∀x ∈ A.

Definition 2.4. [33] The hypervector space is represented by the quadruplet (V,+, ◦,K), where
V is an Abelian group under addition “ + ”, K is a field, “◦ : K × V −→ P∗(V)” is an external
hyperoperation that maps an element from K and an element from V to a non-empty subset of V,
and the following conditions must hold for all a, b ∈ K and x, y ∈ V:

(H1) Right Distributive Law: a◦(x+y) ⊆ a◦x+a◦y. This means that the external hyperoperation
distributes over addition from the right.

(H2) Left Distributive Law: (a+ b) ◦x ⊆ a ◦x+ b ◦x. This means that the external hyperoperation
distributes over addition from the left.
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(H3) Associativity: a ◦ (b ◦ x) = (ab) ◦ x.

(H4) a ◦ (−x) = (−a) ◦ x = −(a ◦ x). This property presents the relation between additive inverses
of scalars and vectors.

(H5) Identity Element: x ∈ 1 ◦ x, where 1 is the identity element of the field K.

Note that in (H1), a ◦ x+ a ◦ y is the set of all elements p+ q, where p belongs to the set a ◦ x and
q belongs to the set a ◦ y. Similarly we have in (H2). Moreover, a ◦ (b ◦ x) equals to the union of
all sets a ◦ t, for all t ∈ b ◦ x.
Furthermore, V is called strongly right distributive if equality holds in the right distributive law
(H1), and similarly, a hypervector space is strongly left distributive if equality holds in the left
distributive law (H2).

A subhyperspace of a hypervector space V is a non-empty subset W of V that behaves like a
separate hypervector space within V. This means that W satisfies the properties of closure under
subtraction and scalar multiplication from V, where for any vectors x and y in W and any scalar
a in the field K, the subtraction of x and y, x− y is still in W, and the scalar multiplication of a
and x, a ◦ x is also in W.

In the rest of this paper, unless stated otherwise, the symbol V represents a hypervector space
over the field K.

Lemma 2.5. [14] If W is a subhyperspace of V = (V,+, ◦,K) and v, v1, v2 ∈ V, then
1) v = v1 + v2 + x, for some x ∈ W, if and only if v = v́1 + x1 + v́2 + x2, where x1, x2 ∈ W,

v́1 ∈ v1 +W and v́2 ∈ v2 +W.
2) if |1 ◦ t| = 1, for all y ∈ V, then for every nonzero b ∈ K and every y ∈ V, t ∈ b ◦ y +W if

and only if t ∈ b ◦ ý for some ý ∈ y +W.

Definition 2.6. [18] If (F ,A) and (G,B) are bipolar fuzzy soft sets over a hypervector space
V = (V,+, ◦,K) and a ∈ K, then the sum of (F ,A) and (G,B) is represented as (F ,A) + (G,B)
and is defined as the bipolar fuzzy soft set (F + G,A ∩ B), where

(F + G)+e (x) = sup
x=y+z

(F+
e (y) ∧ G+

e (z)), (F + G)−e (x) = inf
x=y+z

(F−
e (y) ∨ G−

e (z)).

Also, the scalar multiplication of a scalar value a and a bipolar fuzzy soft set (F ,A) is denoted as
a ◦ (F ,A) and results in the bipolar fuzzy soft set (a ◦ F ,A). In this case,

(a ◦ F)+e (x) =

{
sup
x∈a◦t

F+
e (t) ∃t ∈ V, x ∈ a ◦ t,

0 otherwise,

(a ◦ F)−e (x) =

{
inf

x∈a◦t
F−
e (t) ∃t ∈ V, x ∈ a ◦ t,

0 otherwise.

Lemma 2.7. [18] Let (F ,A) and (G,B) be bipolar fuzzy soft sets of hypervector space V =
(V,+, ◦,K). Then for all y ∈ V and e ∈ A, (F ,A) ⊑ 1 ◦ (F ,A) and −(F ,A) ⊑ (−1) ◦ (F ,A),
where (−F)+e (y) = F+

e (−y) and (−F)−e (y) = F−
e (−y).

Definition 2.8. [18] Consider a bipolar fuzzy soft set (F ,A) in a hypervector space V = (V,+, ◦,K).
If for every element e in A, the following conditions are satisfied, then we can say that (F ,A) is
a bipolar fuzzy soft hypervector space of V :
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1. F+
e (x− y) ≥ F+

e (x) ∧ F+
e (y), F−

e (x− y) ≤ F−
e (x) ∨ F−

e (y),

2. inf
t∈a◦x

F+
e (t) ≥ F+

e (x), sup
t∈a◦x

F−
e (t) ≤ F−

e (x).

Example 2.9. [18] In a classical vector space (R3,+, .,R), we can define the external hyperopera-
tion ◦ : R×R3 → P∗(R3) as follows: For a given point (x0, y0, z0) and a scalar a, a◦(x0, y0, z0) = l
represents a line “l” with the parametric equations: x = ax0, y = ay0 and z = t. By considering
V = (R3,+, ◦,R), we can define V as a hypervector space over the field R. Assuming A = {a, b}
is a set of parameters, we can say that (F ,A) is a bipolar fuzzy soft hypervector space of V. Here,
the functions F+

a and F+
b map R3 to the interval [0, 1], while the functions F−

a and F−
b map R3

to the interval [−1, 0], by the following rules (X = {0} × {0} × R, Y = R× {0} × R):

(x, y, z) ∈ X (x, y, z) ∈ Y \ X otherwise

F+
a (x, y, z) 0.7 0.3 0

F−
a (x, y, z) −0.8 −0.4 −0.2

F+
b (x, y, z) 0.9 0.4 0.1

F−
b (x, y, z) −0.6 −0.5 −0.1

Example 2.10. [18] If K = Z2 = {0, 1} is a field defined by the followings:

+ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1

then (Z4,+, ◦,Z2) is a hypervector space, such that “+ : Z4×Z4 → Z4” and “◦ : Z2×Z4 → P∗(Z4)”
are defined as follow:

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

◦ 0 1 2 3

0 {0, 2} {0} {0} {0}
1 {0, 2} {1, 2, 3} {0, 2} {1, 2, 3}

Suppose A = {c, d, e}. Then (F ,A) is a bipolar fuzzy soft hypervector space of V, where “F+
c , F+

d , F+
e :

Z4 → [0, 1]” and “F−
c , F−

d , F−
e : Z4 → [−1, 0]” are given by the followings:

F+
c (x) =

{
0.5 x ∈ {0, 2}
0.3 x ∈ {1, 3} F−

c (x) =

{
−0.4 x ∈ {0, 2}
−0.2 x ∈ {1, 3}

F+
d (x) =

{
0.7 x ∈ {0, 2}
0.2 x ∈ {1, 3} F−

d (x) =

{
−0.6 x ∈ {0, 2}
−0.3 x ∈ {1, 3}

F+
e (x) =

{
0.8 x ∈ {0, 2}
0.4 x ∈ {1, 3} F−

e (x) =

{
−0.7 x ∈ {0, 2}
−0.5 x ∈ {1, 3}

Definition 2.11. [19] Let (F ,A) denote a bipolar fuzzy soft set within a hypervector space V =
(V,+, ◦,K). For any α in the range (0, 1] and β within the interval [−1, 0), we can represent the
(α, β)-level soft subset of V as (F ,A)α,β. This is defined as a soft set

(F ,A)α,β = {(Fe)α,β ; e ∈ A},
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where for every e in A, (Fe)α,β is an (α, β)-level subset of the bipolar fuzzy soft set Fe = (F+
e ,F−

e )
and can be expressed as:

(Fe)α,β = {x ∈ V ; F+
e (x) ≥ α, F−

e (x) ≤ β}.

Theorem 2.12. [19] Let (F ,A) represent a bipolar fuzzy soft set of V = (V,+, ◦,K). The necessary
and sufficient condition for (F ,A) to be a bipolar fuzzy soft hypervector space of V is that for any
values of α in the range (0, 1] and β within the interval [−1, 0), the soft subset (F ,A)α,β satisfies
the properties of a soft hypervector space of V. In other words, for any values of α in (0, 1], β in
[−1, 0), and e in A, the subset (Fe)α,β behaves like a subhyperspace of V.

Theorem 2.13. [19] In a strongly left distributive hypervector space V = (V,+, ◦,K), if (F ,A)
represents a bipolar fuzzy soft set of V, then (F ,A) is a bipolar fuzzy soft hypervector space of V
if and only if for any a and b in K, a ◦ (F ,A) + b ◦ (F ,A) ⊑ (F ,A).

Theorem 2.14. [19] If (F ,A) is a bipolar fuzzy soft hypervector space of V, for any é ∈ A,
α ∈ (0, 1] and β ∈ [−1, 0), the bipolar fuzzy soft set (G,A) of V is defined as follows forms a
bipolar fuzzy soft hypervector space of V:

G+
e (x) =

{
F+
e (x) x /∈ (Fé)α,β
1 x ∈ (Fé)α,β

G−
e (x) =

{
F−
e (x) x /∈ (Fé)α,β
−1 x ∈ (Fé)α,β

3 Quotient bipolar fuzzy soft sets relative to hypervector spaces

In this section, we define the notion of bipolar fuzzy soft coset related to a bipolar fuzzy soft
hypervector space and obtain a hypervector space F

V = (FV ,⊕,},K) by suitable operation and
external hyperoperation over the set of all bipolar fuzzy soft cosets. Then in an important theorem,
we show that the dimension of the mentioned hypervector space F

V is equal to the dimension of a
quotient hypervector space V

W , where W is a particular subhyperspace of V. Next, we prove that
every bipolar fuzzy soft hypervector space of F

V corresponds to a bipolar fuzzy soft hypervector
space of V.

Lemma 3.1. For any bipolar fuzzy soft hypervector space (F ,A) over strongly left distributive
hypervector space V, any parameter e in A and any vectors x and y in V, the following conditions
hold:

1. F+
e (x) ≤ F+

e (0) and F−
e (x) ≥ F−

e (0).

2. if F+
e (x − y) ≥ F+

e (0), then F+
e (x) = F+

e (y), and if F−
e (x − y) ≤ F−

e (0), then F−
e (x) =

F−
e (y).

Proof. 1) By Theorem 2.13, putting a = 1 and b = −1, it follows that 1 ◦ (F ,A)+ (−1) ◦ (F ,A) ⊑
(F ,A). Then by Lemma 2.7,

F+
e (0) ≥ (1 ◦ (F ,A) + (−1) ◦ (F ,A))+e (0)

= sup
0=y+z

(
(1 ◦ (F ,A))+e (y) ∧ ((−1) ◦ (F ,A))+e (z)

)
≥ (1 ◦ (F ,A))+e (x) ∧ ((−1) ◦ (F ,A))+e (−x)

≥ F+
e (x) ∧ (−F)+e (−x)

= F+
e (x) ∧ F+

e (x)

= F+
e (x),
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and

F−
e (0) ≤ (1 ◦ (F ,A) + (−1) ◦ (F ,A))−e (0)

= inf
0=y+z

(
(1 ◦ (F ,A))−e (y) ∨ ((−1) ◦ (F ,A))−e (z)

)
≤ (1 ◦ (F ,A))−e (x) ∨ ((−1) ◦ (F ,A))−e (−x)

≤ F−
e (x) ∨ (−F)−e (−x)

= F−
e (x) ∨ F−

e (x)

= F−
e (x).

2) F+
e (x) = F+

e (x − y + y) ≥ F+
e (x − y) ∧ F+

e (y) ≥ F+
e (0) ∧ F+

e (y) = F+
e (y). Similarly,

F+
e (y) ≥ F+

e (x) and so F+
e (x) = F+

e (y). Also,

F−
e (x) = F−

e (x− y + y) ≤ F−
e (x− y) ∨ F−

e (y) ≤ F−
e (0) ∨ F−

e (y) = F−
e (y).

Similarly, F−
e (y) ≤ F−

e (x) and so F−
e (x) = F−

e (y).

If W is a subhyperspace of (V,+, ◦,K), then (V/W,+, ∗,K) is a hypervector space over K. In
this context, the external hyperoperation ∗ : K × V/W → P∗(V/W) is defined by a ∗ (v +W) =
a ◦ v +W.
The next theorem is a valuable resource when examining fuzzy cosets within a bipolar fuzzy soft
hypervector space.

Theorem 3.2. Suppose V = (V,+, ◦,K) is a strongly left distributive hypervector space. Then
1) If (F ,A) is a bipolar fuzzy soft hypervector space of V, where W is defined as

W = {y ∈ V; F+
e (y) ≥ F+

e (0), F−
e (y) ≤ F−

e (0), ∀e ∈ A},

then (F̂ , A) represents a bipolar fuzzy soft hypervector space of V
W . In this case, F̂+

e (x + W) =

F+
e (x) and F̂−

e (x+W) = F−
e (x), for all e ∈ A and x ∈ V.

2) Consider U is a subhyperspace of V and (G,A) is a bipolar fuzzy soft hypervector space of V
U ,

satisfying the conditions G+
e (x+ U) = G+

e (U) and G−
e (x+ U) = G−

e (U), only when x ∈ U . In such
a scenario, there exists a bipolar fuzzy soft hypervector space (F ,A) of V, such that F̂ = G and{

z ∈ V; F+
e (z) ≥ F+

e (0), F−
e (z) ≤ F−

e (0), ∀e ∈ A
}
= U .

Proof. 1) If x, y ∈ W, a ∈ K, then for all e ∈ A,

F+
e (x− y) ≥ F+

e (x) ∧ F+
e (y) ≥ F+

e (0) ∧ F+
e (0) = F+

e (0),

F−
e (x− y) ≤ F−

e (x) ∨ F−
e (y) ≤ F−

e (0) ∧ F−
e (0) = F−

e (0),

so x − y ∈ W. Also, by Definition 2.8, for all s ∈ a ◦ x, F+
e (s) ≥ inf

t∈a◦x
F+
e (t) ≥ F+

e (x) ≥ F+
e (0)

and F−
e (s) ≤ sup

t∈a◦x
F−
e (t) ≤ F−

e (x) ≤ F−
e (0). Thus a ◦ x ⊆ W and W is a subhyperspace of V.

Now if e ∈ A, x, y ∈ V and x + W = y + W, then x, y ∈ W, so F+
e (x − y) ≥ F+

e (0) and
F−
e (x − y) ≤ F−

e (0), for all e ∈ A. Thus by Lemma 3.1, F+
e (x) = F+

e (y) and F−
e (x) = F−

e (y),
for all e ∈ A. Hence F̂+

e (x +W) = F̂+
e (y +W) and F̂−

e (x +W) = F̂−
e (y +W). Therefore, F̂ is

well-defined.
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Next, if x, y ∈ V , a ∈ K and e ∈ A, then

F̂+
e ((x+W)− (y +W)) = F̂+

e ((x− y) +W)

= F+
e (x− y)

≥ F+
e (x) ∧ F+

e (y)

= F̂+
e (x+W) ∧ F̂+

e (y +W),

and similarly, F̂−
e ((x+W)− (y +W)) ≤ F̂−

e (x+W) ∨ F̂−
e (y +W).

Also, if s ∈ a ◦ x, then by Definition 2.8,

F̂+
e (s+W) = F+

e (s) ≥ inf
t∈a◦x

F+
e (t) ≥ F+

e (x) = F̂+
e (x+W),

and
F̂−
e (s+W) = F−

e (s) ≤ sup
t∈a◦x

F−
e (t) ≤ F−

e (x) = F̂−
e (x+W).

Thus
inf

s+W∈a∗(x+W)=a◦x+W
F̂+
e (s+W) ≥ F̂+

e (x+W),

and
sup

s+W∈a∗(x+W)=a◦x+W
F̂−
e (s+W) ≤ F̂−

e (x+W).

Hence, by Definition 2.8, (F̂ ,A) is a bipolar fuzzy soft hypervector space of V
W .

2) Define a bipolar fuzzy soft set (F ,A) of V, such that for every e ∈ A, F(e) = Fe : V →
[0, 1] × [−1, 0], given by F+

e (x) = G+
e (x + U) and F−

e (x) = G−
e (x + U), where x belongs to V. It

can be easily verified that (F ,A) qualifies as a bipolar fuzzy soft hypervector space of V.
Moreover, x ∈ V such that for every e ∈ A, F+

e (x) ≥ F+
e (0) and F−

e (x) ≤ F+
e (0), if and only if

for all e ∈ A, G+
e (x+ U) = G+

e (U) and G−
e (x+ U) = G−

e (U), if and only if x ∈ U . Thus

F̂+
e (x+ U) = F̂+

e (x+W) = F+
e (x) = G+

e (x+ U),

and
F̂−
e (x+ U) = F̂−

e (x+W) = F−
e (x) = G−

e (x+ U).

Hence, F̂ = G and the proof is completed.

Example 3.3. If (F ,A) represents the bipolar fuzzy soft hypervector space of (R3,+, ◦,R) in
Example 2.9, then

W =
{
x ∈ R3, F+

a (x) ≥ 0.7,F+
b (x) ≥ 0.9,F−

a (x) ≤ −0.8,F−
b (x) ≤ −0.6

}
= {0} × {0} × R.

Thus (F̂ ,A) defined in Theorem 3.2, is a bipolar fuzzy soft hypervector space of R3

{0}×{0}×R .

Example 3.4. If (F ,A) represents the bipolar fuzzy soft hypervector space of (Z4,+, ◦,Z2) in
Example 2.10, then

W =

{
x ∈ Z4, F+

c (x) ≥ 0.5,F+
d (x) ≥ 0.7,F+

e (x) ≥ 0.8,
F−
c (x) ≤ −0.4,F−

d (x) ≤ −0.6,F−
e (x) ≤ −0.7

}
= {0, 2}.

Thus (F̂ ,A) defined in Theorem 3.2, is a bipolar fuzzy soft hypervector space of Z4
{0,2} .
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Definition 3.5. Let (F ,A) be a bipolar fuzzy soft hypervector space of V with v ∈ V. Then the
bipolar fuzzy soft set vF of V (vF : A → BFV), is defined as follows:

∀e ∈ A, x ∈ V, (vF)+e (x) = FF+
e (v − x), (vF)−e (x) = F−

e (v − x),

vF is called the bipolar fuzzy soft coset related to F and v. The collection of all bipolar fuzzy soft
cosets related to F is denoted by F

V , i.e.

F
V

= {vF ; v ∈ V}.

Theorem 3.6. In a bipolar fuzzy soft hypervector space (F ,A) over V = (V,+, ◦,K), the set(F
V ,⊕,},K

)
is a hypervector space, where the operation ⊕ : F

V × F
V → F

V and the external hyper-

operation } : K × F
V → P∗(

F
V ) are defined as follows:

xF ⊕ yF = (x+ y)F ,

a} (xF) = {tF ; t ∈ a ◦ x},

for all xF , yF ∈ F
V , a ∈ K.

Proof. One can easily see that “ ⊕ ” and “ } ” are well-defined and (FV ,⊕) is an Abelian group.
Now let xF , x1F , x2F , yF ∈ F

V and a1, a2, b, c ∈ K. Then

(H1)

b} (x1F + x2F) = b} ((x1 + x2)F)

= {xF ; x ∈ b ◦ (x1 + x2)}
⊆ {xF ; x ∈ b ◦ x1 + b ◦ x2}
= {xF ; x = s1 + s2, s1 ∈ b ◦ x1, s2 ∈ b ◦ x2}
= {(s1 + s2)F ; s1 ∈ b ◦ x1, s2 ∈ b ◦ x2}
= {s1F ⊕ s2F ; s1 ∈ b ◦ x1, s2 ∈ b ◦ x2}
= {s1F ; s1 ∈ b ◦ x1} ⊕ {s2F ; s2 ∈ b ◦ x2}
= (b} (x1F))⊕ (b} (x2F)) .

(H2)

(a1 + a2)} (yF) = {sF ; s ∈ (a1 + a2) ◦ y}
⊆ {sF ; s ∈ a1 ◦ y + a2 ◦ y}
= {sF ; s = s1 + s2, s1 ∈ a1 ◦ y, s2 ∈ a2 ◦ y}
= {(s1 + s2)F ; s1 ∈ a1 ◦ y, s2 ∈ a2 ◦ y}
= {s1F ⊕ s2F ; s1 ∈ a1 ◦ y, s2 ∈ a2 ◦ y}
= {s1F ; s1 ∈ a1 ◦ y} ⊕ {s2F ; s2 ∈ a2 ◦ y}
= (a1 } (yF))⊕ (a2 } (yF)) .
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(H3)

b} (c} (xF)) =
∪

tF∈c}(xF)

b} tF

=
∪

t∈c◦x
{sF ; s ∈ b ◦ t}

= {sF ; s ∈ b ◦ (c ◦ x)}
= {sF ; s ∈ (bc) ◦ x}
= (bc)} (xF).

(H4)

b} (−(yF)) = b} ((−y)F)

= {tF ; t ∈ b ◦ (−y)}
= {tF ; t ∈ (−b) ◦ y}
= (−b)} (yF),

similarly, b} (−(yF)) = −(b} (bF)).

(H5) xF ∈ {tF ; 1 ∈ a ◦ x} = 1} (xF).

Consequently, by Definition 2.4, the set
(F
V ,⊕,},K

)
forms a hypervector space.

Example 3.7. Suppose (F ,A) is the bipolar fuzzy soft hypervector space of (R3,+, ◦,R) in Ex-
ample 2.9, and v = (v1, v2, v3) ∈ R3. Then the bipolar fuzzy soft coset vF related to F and v is
defined by the followings:

((v1, v2, v3)F)+a (x1, x2, x3) = F+
a (v1 − x1, v2 − x2, v3 − x3)

=


0.7 (x1, x2, x3) ∈ {v1} × {v2} × R,
0.3 (x1, x2, x3) ∈ (R× {v2} × R) \ ({v1} × {v2} × R),
0 otherwise,

((v1, v2, v3)F)−a (x1, x2, x3) = F−
a (v1 − x1, v2 − x2, v3 − x3)

=


−0.8 (x1, x2, x3) ∈ {v1} × {v2} × R,
−0.4 (x1, x2, x3) ∈ (R× {v2} × R) \ ({v1} × {v2} × R),
−0.2 otherwise,

((v1, v2, v3)F)+b (x1, x2, x3) = F+
b (v1 − x1, v2 − x2, v3 − x3)

=


0.9 (x1, x2, x3) ∈ {v1} × {v2} × R,
0.4 (x1, x2, x3) ∈ (R× {v2} × R) \ ({v1} × {v2} × R),
0.1 otherwise,

((v1, v2, v3)F)−b (x1, x2, x3) = F−
b (v1 − x1, v2 − x2, v3 − x3)

=


−0.6 (x1, x2, x3) ∈ {v1} × {v2} × R,
−0.5 (x1, x2, x3) ∈ (R× {v2} × R) \ ({v1} × {v2} × R),
−0.1 otherwise.
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Now, for every vF = (v1, v2, v3)F , v́F = (v́1, v́2, v́3)F ∈ F
R3 , it follows that:

(vF ⊕ v́F)+a (x1, x2, x3) = ((v1 + v́1, v2 + v́2, v3 + v́3)F)+a (x1, x2, x3)

=


0.7 (x1, x2, x3) ∈ S = {v1 + v́1} × {v2 + v́2} × R,
0.3 (x1, x2, x3) ∈ (R× {v2 + v́2} × R) \ S,
0 otherwise,

(vF ⊕ v́F)−a , (vF ⊕ v́F)+b and (vF ⊕ v́F)−b are similarly obtained. Also, for every r ∈ R, vF =
(v1, v2, v3)F ∈ F

R3 ,

r } (vF) = {xF ;x ∈ r ◦ (v1, v2, v3)}
= {(rv1, rv2, t)F ; t ∈ R} ,

where for every t ∈ R,

((rv1, rv2, t)F)+a (x1, x2, x3) = F+
a (rv1 − x, rv2 − y, t− z)

=


0.7 (x1, x2, x3) ∈ X = {rv1} × {rv2} × R,
0.3 (x1, x2, x3) ∈ (R× {rv2} × R) \X,
0 otherwise,

(r } ((v1, v2, v3)F))−a , (r } ((v1, v2, v3)F))+b and (r } ((v1, v2, v3)F))−b are similarly defined.

Example 3.8. Let’s talk about the bipolar fuzzy soft hypervector space (F ,A) which is defined on
the algebraic structures (Z4,+, ◦,Z2) in Example 2.10. Here F

Z4
= {vF , v ∈ Z4} = {0F , 1F , 2F , 3F},

where for example, 0F and 1F are defined by the followings:

(0F)+c (x) = F+
c (−x) =

{
0.5 x ∈ {0, 2}
0.3 x ∈ {1, 3} (0F)−c (x) = F−

c (−x) =

{
−0.4 x ∈ {0, 2}
−0.2 x ∈ {1, 3}

(0F)+d (x) = F+
d (−x) =

{
0.7 x ∈ {0, 2}
0.2 x ∈ {1, 3} (0F)−d (x) = F−

d (−x) =

{
−0.6 x ∈ {0, 2}
−0.3 x ∈ {1, 3}

(0F)+e (x) = F+
e (−x) =

{
0.8 x ∈ {0, 2}
0.4 x ∈ {1, 3} (0F)−e (x) = F+

e (−x) =

{
−0.7 x ∈ {0, 2}
−0.5 x ∈ {1, 3}

and

(1F)+c (x) = F+
c (1− x) =

{
0.5 x ∈ {1, 3}
0.3 x ∈ {0, 2} (1F)−c (x) = F−

c (1− x) =

{
−0.4 x ∈ {1, 3}
−0.2 x ∈ {0, 2}

(1F)+d (x) = F+
d (1− x) =

{
0.7 x ∈ {1, 3}
0.2 x ∈ {0, 2} (1F)−d (x) = F−

d (1− x) =

{
−0.6 x ∈ {1, 3}
−0.3 x ∈ {0, 2}

(1F)+e (x) = F+
e (1− x) =

{
0.8 x ∈ {1, 3}
0.4 x ∈ {0, 2} (1F)−e (x) = F−

e (1− x) =

{
−0.7 x ∈ {1, 3}
−0.5 x ∈ {0, 2}

2F and 3F are similarly obtained. Moreover, ⊕ and } are defined by the following tables:

⊕ 0F 1F 2F 3F
0F 0F 1F 2F 3F
1F 1F 2F 3FF 0F
2F 2F 3F 0F 1F
3F 3F 0F 1F 2F

} 0F 1F 2F 3F
0 {0F , 2F} {0F} {0F} {0F}
1 {0F , 2F} {1F , 2F , 3F} {0F , 2F} {1F , 2F , 3F}
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Lemma 3.9. If (F ,A) is a bipolar fuzzy soft hypervector space of V, then for every parameter
e ∈ A and every vectors x, y ∈ V, the followings hold:

1. F+
e (x) < F+

e (y) implies that F+
e (x− y) = F+

e (x) = F+
e (y − x).

2. F−
e (x) > F+

e (y) implies that F−
e (x− y) = F−

e (x) = F−
e (y − x).

Proof. 1) F+
e (x−y) ≥ F+

e (x)∧F+
e (y) = F+

e (x). Also, F+
e (x) = F+

e (x−y+y) ≥ F+
e (x−y)∧F+

e (y)
and so F+

e (x) ≥ F+
e (x− y). Then F+

e (x− y) = F+
e (x). Similarly, F+

e (y − x) = F+
e (x).

2) F−
e (x−y) ≤ F−

e (x)∨F−
e (y) = F−

e (x). Moreover, F−
e (x) = F−

e (x−y+y) ≤ F−
e (x−y)∨F−

e (y)
and so F−

e (x) ≤ F−
e (x− y). Thus F−

e (x− y) = F−
e (x), and similarly, F−

e (y − x) = F−
e (x).

Next lemma will be used for proving Theorem 3.11, about the dimension of the hypervector
space F

V .

Lemma 3.10. Suppose V = (V,+, ◦,K) is a strongly left distributive hypervector space and (F ,A)
is a bipolar fuzzy soft hypervector space of V. Then for every vector x ∈ V and every parameter
e ∈ A, it follows that F+

e (x) = F+
e (0) and F−

e (x) = F−
e (0) if and only if xF = 0F .

Proof. If F+
e (x) = F+

e (0) and F−
e (x) = F−

e (0), then for all z ∈ V, by Lemma 3.1, F+
e (z) ≤

F+
e (0) = F+

e (x) and F−
e (z) ≥ F−

e (0) = F−
e (x). Now if F+

e (z) < F+
e (x) and F−

e (z) > F−
e (x), then

by Lemma 3.9, F+
e (z − x) = F+

e (z) and F−
e (z − x) = F−

e (z). Thus (xF)(z) = (0F)(z) and so
xF = 0F . Also, if F+

e (z) = F+
e (x) = F+

e (0) and F−
e (z) = F−

e (x) = F−
e (0), then

F+
e (z − x) ≥ F+

e (z) ∧ F+
e (x) = F+

e (0) ∧ F+
e (0) = F+

e (0),

and
F−
e (z − x) ≤ F−

e (z) ∨ F−
e (x) = F−

e (0) ∨ F−
e (0) = F−

e (0).

Hence, by Lemma 3.1, F+
e (z − x) = F+

e (0) and F−
e (z − x) = F−

e (0). So in this case, xF = 0F ,
too.
Conversely, (xF)(0) = (0F)(0), and so F+

e (x) = F+
e (0) and F−

e (x) = F−
e (0), for all x ∈ V,

e ∈ A.

The notion of dimension of a hypervector space was defined and studied by Ameri [8] as follows:
A subset B of the hypervector space V is considered linearly independent, if for every collections
of vectors v1, . . . , vn in B, and every coefficients c1, . . . , cn in the field K, the equation 0 ∈ c1 ◦ v1+
· · · + cn ◦ vn, implies that c1 = · · · = cn = 0. A basis for V is a linearly independent subset B of
V such that every vector x in V can be expressed as an element of a linear combination of vectors
x1, . . . , xn in B with coefficients c1, . . . , cn in K, i.e. x ∈ c1 ◦ x1 + · · · + cn ◦ xn. If a hypervector
space V has a finite basis, it is referred to as finite dimensional. If W is a subhyperspace of V,
then dim V

W = dimV − dimW.

Theorem 3.11. Let V = (V,+, ◦,K) be a hypervector space with strongly left distributive property,
and (F ,A) be a bipolar fuzzy soft hypervector space of V. Consider

W = {x ∈ V; F+
e (x) ≥ F+

e (0), F−
e (x) ≤ F−

e (0), ∀e ∈ A}.

Then

dim
F
V

= dim
V
W

.
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Proof. If for all e ∈ A, F+
e and F−

e are constant, i.e. F+
e (x) = F+

e (0) and F−
e (x) = F−

e (0), for
every vector x in V, then by Lemma 3.10, F

V = {0F}, W = V and in this case, dim F
V = 0 = dim V

W .
So assume that F+

e and F−
e are not constant. Let dimV = n, dimW = m. Suppose

{w1, . . . , wm, v1, . . . , vr}, r = n − m, is a basis for V and {w1, . . . , wm} is a basis for W. Then
{v1 +W, . . . , vr +W} is a basis for V

W . It will be shown that B = {v1F , . . . , vrF} is a basis for F
V .

Note that elements of B are pairwise distinct, for if viF = vjF , i ̸= j, then (vi − vj)F = 0F
and so by Lemma 3.10, F+

e (vi− vj) = F+
e (0) and F−

e (vi− vj) = F−
e (0), ∀e ∈ A. Thus vi− vj ∈ W

and vi +W = vj +W, which is a contradiction.
Now we show that B generates F

V . Let vF ∈ F
V , vF ̸= 0F . Then by Lemma 3.10, F+

e (v) ̸=
F+
e (0) or F−

e (v) ̸= F−
e (0), for some e ∈ A. Thus v +W is a nonzero element of V

W . Hence there
exist coefficients a1, . . . , ar in the field K such that

v +W ∈ a1 ∗ (v1 +W) + · · ·+ ar ∗ (vr +W)

= (a1 ◦ v1 +W) + · · ·+ (ar ◦ vr +W)

= (a1 ◦ v1 + · · ·+ ar ◦ vr) +W.

So there exist vectors t1, . . . , tr in V such that ti ∈ ai ◦ vi, for all 1 ≤ i ≤ r and v + W =
t1 + · · · + tr + W. Then v − (t1 + · · · + tr) ∈ W, i.e. F+

e (v − t1 − · · · − tr) = F+
e (0) and

F−
e (v − t1 − · · · − tr) = F−

e (0), for all e ∈ A. By Lemma 3.10, (v − t1 − · · · − tr)F = 0F and by
definition of operations on F

V , it follows that:

vF = (t1 + · · ·+ tr)F
= t1F ⊕ · · · ⊕ trF
∈ (a1 } v1F)⊕ · · · ⊕ (ar } vrF).

Finally, we prove that B is linearly independent. Let 0F ∈ (a1 } v1F)⊕ · · · ⊕ (ar } vrF), for some
a1, . . . , ar ∈ K. Then

0F = t1F ⊕ · · · ⊕ trF = (t1 + · · ·+ tr)F , for some tiF ∈ ai } viF , 1 ≤ i ≤ r.

Thus by Lemma 3.10, F+
e (t1 + · · · + tr) = F+

e (0) and F−
e (t1 + · · · + tr) = F−

e (0), for all e ∈ A.
Hence t1 + · · ·+ tr ∈ W and so there exist coefficients b1, . . . , bm in the field K such that

t1 + · · ·+ tr ∈ b1 ◦ w1 + · · ·+ bm ◦ wm,
=⇒ ∃li ∈ bi ◦ wi, 1 ≤ i ≤ m, t1 + · · ·+ tr = l1 + · · ·+ lm,
=⇒ 0 = t1 + · · ·+ tr − l1 − · · · − lm ∈ a1 ◦ v1 + · · ·+ ar ◦ vr − b1 ◦ w1 − · · · − bm ◦ wm.

Hence a1 = · · · = ar = b1 = · · · = bm = 0.
Therefore, dim F

V = r = n−m = dimV − dimW = dim V
W .

Example 3.12. In Example 3.4, we saw that

W = {x ∈ V;F+
e (x) ≥ FF+

e (0),F−
e (x) ≤ F−

e (0), ∀e ∈ A} = {0, 2},

where (F ,A) is the bipolar fuzzy soft hypervector space of V = (Z4,+, ◦,Z2) defined in Example
2.10. Here β = {1 + {0, 2}} is a basis for V

W = Z4
{0,2} = {W, 1 + W} = {{0, 2}, {1, 3}} and so

dim Z4
{0,2} = 1. Also, β́ = {1F} is a basis for F

Z4
= {0F , 1F , 2F , 3F}, and so dim F

Z4
= 1. Thus

dim F
Z4

= dim Z4
{0,2} .
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Note that W = {0} × {0} × R in Example 3.3, is dimensionless, i.e. it does not have any linearly
independent subset and so we can not check the satisfaction of Theorem 3.11, for the bipolar fuzzy
soft hypervector space (F ,A) of V = (R3,+, ◦,R), defined in Example 2.9.
A linear transformation was defined in [8] as a function T : V → W between hypervector spaces V
and W, such that T (x+ y) = T (x) + T (y) and T (a ◦ x) ⊆ a ◦ T (x), for all vectors x, y in V and all
scalars a in the field K. If T (a ◦ x) = a ◦ T (x), then T is said to be a good transformation. The
kernel of a linear transformation T : V → W is the following set:

kerT = {x ∈ V, T (x) ∈ 0 ◦ 0W}.

Theorem 3.13. Let (F ,A) represent a bipolar fuzzy soft hypervector space of V = (V,+, ◦,K)
and

W = {x ∈ V; F+
e (x) = F+

e (0), F−
e (x) = F−

e (0), ∀e ∈ A}.
Then

1. The bipolar fuzzy soft set (F́ ,A) of F
V = (FV ,⊕,},K) defined by

F́+
e (xF) = F+

e (x), F́−
e (xF) = F−

e (x), ∀e ∈ A, x ∈ V,

is a bipolar fuzzy soft hypervector space of F
V .

2. The mapping ϕ : V → F
V defined by ϕ(x) = xF , is an onto good transformation with the

kernel equal to W.

3. Every bipolar fuzzy soft hypervector space of F
V corresponds to a bipolar fuzzy soft hypervector

space of V.

Proof. 1) For every parameter e in A, every vectors x, y in V and every scalar a in the field K, it
follows that:

F́+
e (xF ⊖ yF) = F́+

e ((x− y)F)

= F+
e (x− y)

≥ F+
e (x) ∧ F+

e (y)

= F́+
e (xF) ∧ F́+

e (yF),

and similarly, F́−
e (xF ⊖ yF) ≤ F́−

e (xF) ∨ F́−
e (yF).

Also, for all tF ∈ a} (xF), by Definition 2.8,

F́+
e (tF) = F+

e (t) ≥ inf
s∈a◦x

F+
e (s) ≥ F+

e (x) = F́+
e (xF),

and so
inf

tF∈a}(xF)
F́+
e (tF) ≥ F́+

e (xF).

Moreover, F́−
e (tF) = F−

e (t) ≤
∨

s∈a◦x
F−
e (s) ≤ F−

e (x) = F́−
e (xF), and so sup

tF∈a}(xF)
F́−
e (tF) ≤

F́−
e (xF). Therefore, (F́ ,A) is a bipolar fuzzy soft hypervector space of F

V .
2) For all x, y ∈ V, a ∈ K, ϕ(x+y) = (x+y)F = xF ⊕yF = ϕ(x)⊕ϕ(y) and ϕ(a◦x) = (a◦x)F =
a} (xF). Thus ϕ is a good transformation. Clearly, ϕ is onto. Also,

kerϕ = {x ∈ V, ϕ(x) ∈ 0} (0F)}
= {x ∈ V, xF ∈ {tF , t ∈ 0 ◦ 0}}
= {x ∈ V, xF = tF , for some t ∈ 0 ◦ 0}
= {x ∈ V, F+

e (x) = F+
e (t),F−

e (x) = F−
e (t), for some t ∈ 0 ◦ 0, ∀e ∈ A}.
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But for every t ∈ 0 ◦ 0, by Definition 2.8,

F+
e (t) ≥ inf

s∈0◦0
F+
e (s) ≥ F+

e (0),

F−
e (t) ≤ sup

s∈0◦0
F−
e (s) ≤ F−

e (0),

so F+
e (t) = F+

e (0) and F−
e (t) = F−

e (0). Hence,

kerϕ = {x ∈ V , F+
e (x) = F+

e (0),F−
e (x) = F−

e (0), ∀e ∈ A} = W.

3) If (G,A) is a bipolar fuzzy soft hypervector space of F
V , then the bipolar fuzzy soft set H : A →

BFV defined by H(e) = He = (H+
e ,H−

e ), for all e ∈ A, is indeed a bipolar fuzzy soft hypervector
space of V. In this case, H+

e (x) = G+
e (xF) and H−

e (x) = G−
e (xF), for all x ∈ V.

4 Some bipolar fuzzy soft sets of quotient hypervector spaces

In this part, we establish three bipolar fuzzy soft sets for quotient hypervector spaces while con-
sidering specific limitations. In fact, in this way, some new bipolar fuzzy soft hypervector spaces
are given.

Theorem 4.1. If V = (V,+, ◦,K) is a strongly left distributive hypervector space and W is a
subhyperspace of V, where 0 ◦x ⊆ W, for every vector x in V, then a bipolar fuzzy soft hypervector
space (G,A) of V

W can be constructed from the bipolar fuzzy soft hypervector space (F ,A) of V. In
this construction, the bipolar fuzzy soft set (G,A) of V

W is defined by

G+
e (x+W) = sup

w∈W
F+
e (x+ w),

G−
e (x+W) = inf

w∈W
F−
e (x+ w),

where e is a parameter in A and x is a vector in V.

Proof. We can demonstrate that (G,A) fulfills the requirements stated in Definition 2.8. Assume
that e belongs to A, and x and y are elements of V, while a is an element of K. Then by Lemma
2.5, it follows that:

1)

G+
e (x+W + y +W) = G+

e (x+ y +W)

= sup
w∈W

F+
e (x+ y + w)

= sup
w1,w2∈W

x́∈x+W,ý∈y+W

F+
e (x́+ w1 + ý + w2)

≥ sup
w1,w2∈W

x́∈x+W,ý∈y+W

(
F+
e (x́+ w1) ∧ F+

e (ý + w2)
)

≥

 sup
w1∈W
x́∈x+W

F+
e (x́+ w1)

 ∧

 sup
w2∈W
ý∈y+W

F+
e (ý + w2)


=

(
sup

w1∈W
F+
e (x+ w1)

)
∧
(

sup
w2∈W

F+
e (y + w2)

)
= G+

e (x+W) ∧ G+
e (y +W),
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and similarly, G−
e (x+W + y +W) ≤ G−

e (x+W) ∨ G−
e (y +W). Also,

G+
e (−(x+W)) = G+

e (−x+W)

= sup
w∈W

F+
e (−x+ w)

= sup
w∈W

F+
e (−(x− w))

≥ sup
w∈W

F+
e (x− w)

= sup
ẃ∈W

F+
e (x+ ẃ)

= G+
e (x+W),

and likewise, G−
e (−(x+W)) ≤ G−

e (x+W).
2) If a ̸= 0 and t ∈ a ◦ x, then it follows that t+ w1 ∈ a ◦ x+ 1 ◦ w1 = a ◦ x+ a ◦

(
a−1 ◦ w1

)
,

and so t+w1 ∈ a ◦ x+ a ◦w2, for some w2 ∈ a−1 ◦w1 ⊆ W. Thus F+
e (t+w1) ≥ inf

s∈a◦x+a◦w2

F+
e (s)

and F−
e (t+ w1) ≤ inf

s∈a◦x+a◦w2

F−
e (s). Hence

G+
e (t+W) = sup

w1∈W
F+
e (t+ w1)

≥ sup
w2∈W

(
inf

s∈a◦x+a◦w2

F+
e (s)

)
= sup

w2∈W

(
inf

s∈a◦(x+w2)
F+
e (s)

)
≥ sup

w2∈W
F+
e (x+ w2)

= G+
e (x+W),

and likewise, G−
e (t+W) ≤ G−

e (x+W). Therefore,

inf
t+W∈a∗(x+W)

G+
e (t+W) = inf

t+W∈a◦x+W
G+
e (t+W)

= inf
t∈a◦x

G+
e (t+W)

≥ G+
e (x+W),

and

sup
t+W∈a∗(x+W)

G−
e (t+W) = sup

t+W∈a◦x+W
G−
e (t+W)

= sup
t∈a◦x

G−
e (t+W)

≤ G−
e (x+W).

Moreover, if a = 0, then according to 3.1, it can be inferred that for every t ∈ 0 ◦ x, the followings
hold:

G+
e (t+W) = sup

w∈W
F+
e (t+ w)

= F+
e (0) (t ∈ 0 ◦ x ⊆ W)

≥ G+
e (x+W ), (Im F+

e = Im G+
e )
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and

G−
e (t+W) = inf

w∈W
F−
e (t+ w)

= F−
e (0) (t ∈ 0 ◦ x ⊆ W)

≤ G−
e (x+W). (Im F−

e = Im G−
e )

Hence, inf
t+W∈0∗(x+W)

G+
e (t+W) ≥ G+

e (x+W) and sup
t+W∈0∗(x+W)

G−
e (t+W) ≤ G−

e (x+W).

Consequently, (G,A) is a bipolar fuzzy soft hypervector space of V
W .

Example 4.2. Consider the bipolar fuzzy soft hypervector space (F ,A) of V = (R3,+, ◦,R) in
Example 2.9, and W = R × {0} × R. Then 0 ◦ (x, y, z) ⊆ W, for every vector (x, y, z) in R3,

and the bipolar fuzzy soft hypervector space (G,A) of R3

R×{0}×R in Theorem 4.1, is defined by the
followings:

G+
a (x, y, z) =

{
0.7 y = 0,
0 y ̸= 0,

G−
a (x, y, z) =

{
−0.8 y = 0,
−0.2 y ̸= 0,

G+
b (x, y, z) =

{
0.9 y = 0,
0.1 y ̸= 0,

G−
b (x, y, z) =

{
−0.6 y = 0,
−0.1 y ̸= 0.

Example 4.3. Consider the bipolar fuzzy soft hypervector space (F ,A) of V = (Z4,+, ◦,Z2) in
Example 2.10, and W = {0, 2}. Then 0 ◦ x ⊆ W, for all x ∈ Z4, and the bipolar fuzzy soft
hypervector space (G,A) of Z4

{0,2} in Theorem 4.1, is defined by G+
a (x+W) = F+

a (x), G−
a (x+W) =

F−
a (x), for all a ∈ A = {c, d, e} and x ∈ Z4.

Theorem 4.4. In a strongly left distributive hypervector space V = (V,+, ◦,K) and given a sub-
hyperspace U of V where 0 ◦ x ⊆ U and |1 ◦ x́| = 1, for all vectors x in V and x́ ∈ U , if (F ,A)
represents a bipolar fuzzy soft hypervector space of V, then the bipolar fuzzy soft set (H,A) of V

U
can be defined as follows, which also forms a bipolar fuzzy soft hypervector space of V

U :

H+
e (x+ U) =

{
inf
u∈U

F+
e (x+ u) x /∈ U ,

F+
e (0) x ∈ U ,

H−
e (x+ U) =

{
sup
u∈U

F−
e (x+ u) x /∈ U ,

F−
e (0) x ∈ U ,

for all e ∈ A, x ∈ V.

Proof. We will demonstrate that the pair (H,A) meets the requirements outlined in Definition
2.8. Given that e is an element of A, and x and y belong to V, while a belongs to K, then
1) If x and y are vectors in U , then

H+
e ((x+ U) + (y + U)) = H+

e (U)
= F+

e (0)

= H+
e (x+ U) ∧H+

e (y + U),

and similarly, H−
e ((x+ U) + (y + U)) = H−

e (x+ U) ∨H−
e (y + U).
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If x ∈ U and y /∈ U , then by Lemma 3.1,

H+
e ((x+ U) + (y + U)) = H+

e (y + U)
= F+

e (0) ∧H+
e (y + U)

= H+
e (x+ U) ∧H+

e (y + U),

and similarly, H−
e ((x+ U) + (y + U)) = H−

e (x+ U) ∨H−
e (y + U).

If x /∈ U and y ∈ U , the result is similarly obtained.
If x, y /∈ U , then

H+
e (x+ y + U) = inf

u∈U
F+
e (x+ y + u)

= inf
x́∈x+U , ý∈y+U

F+
e (x́+ ý)

≥ inf
x́∈x+U , ý∈y+U

(
F+
e (x́) ∧ F+

e (ý)
)

=

(
inf

x́∈x+U
F+
e (x́)

)
∧
(

inf
ý∈y+U

F+
e (ý)

)
=

(
inf
u1∈U

F+
e (x+ u1)

)
∧
(

inf
u2∈U

F+
e (y + u2)

)
= H+

e (x+ U) ∧H+
e (y + U),

and similarly, H−
e (x+ y + U) ≤ H−

e (x+ U) ∨H−
e (y + U). Thus

H+
e ((x+ U) + (y + U)) ≥ H+

e (x+ U) ∧H+
e (y + U),

and
H−

e ((x+ U) + (y + U)) ≤ H−
e (x+ U) ∨H−

e (y + U),

for all x+ U , y + U ∈ V
U .

Also, if x ∈ U , then −x ∈ U and so H+
e (−(x+ U)) = F+

e (0) = H+
e (x+ U) and H−

e (−(x+ U)) =
F−
e (0) = H−

e (x+ U). If x /∈ U , then

H+
e (−(x+ U)) = H+

e (−x+ U)
= inf

u∈U
F+
e (−x+ u)

= inf
u∈U

F+
e (−(x− u))

≥ inf
u∈U

F+
e (x− u)

= inf
ú∈U

F+
e (x+ ú)

= H+
e (x+ U),

and similarly, H−
e (−(x+ U)) = H−

e (x+ U).
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2) If a ̸= 0, then by Lemma 2.5,

inf
t+U∈a∗(x+U)

H+
e (t+ U) = inf

t+U∈a◦x+U
H+

e (t+ U)

= inf
t∈a◦x

H+
e (t+ U)

= inf
t∈a◦x

inf
u∈U

F+
e (t+ u)

= inf
t́∈a◦x+U

F+
e (t́)

= inf
t́∈a◦x́,x́∈x+U

F+
e (t́)

= inf
x́∈x+U

inf
t́∈a◦x́

F+
e (t́)

≥ inf
x́∈x+U

F+
e (x́)

= inf
ú∈U

F+
e (x+ ú)

= H+
e (x+ U),

and similarly, sup
t+U∈a∗(x+U)

H−
e (t+ U) ≤ H−

e (x+ U).

If a = 0 and t ∈ 0 ◦ x, then by Lemma 3.1, for all e ∈ A, H+
e (t+ U) = F+

e (0) ≥ H+
e (x + U) and

H−
e (t+ U) = F−

e (0) ≤ H−
e (x+ U), since t ∈ 0 ◦ x ⊆ U , Im F+

e = Im H+
e and Im F−

e = Im H−
e .

Thus
inf

t+U∈0∗(x+U)
H+

e (t+ U) = inf
t∈0◦x

H+
e (t+ U) ≥ H+

e (x+ U),

and
sup

t+U∈0∗(x+U)
H−

e (t+ U) = sup
t∈0◦x

H−
e (t+ U) ≤ H−

e (x+ U).

Therefore, (H,A) is a bipolar fuzzy soft hypervector space of V
W .

Theorem 4.5. Let (F ,A) represent a bipolar fuzzy soft hypervector space of V, where U = (Fe)α,β
is the (α, β)-level subset of V, for some e belonging to A, α belonging to (0, 1] and β belonging to
[−1, 0). If (G,A) is the bipolar fuzzy soft hypervector space of V defined in Theorem 2.14, then
the bipolar fuzzy soft set (G̃,A) of V

U given by the following expressions is a bipolar fuzzy soft
hypervector space of V

U :

G̃+
e (x+ U) = sup

u∈U
G+
e (x+ u),

G̃−
e (x+ U) = inf

u∈U
G−
e (x+ u),

where e belongs to A and x belongs to V.

Proof. We examine the criteria stated in Definition 2.8, for the case of (G̃, A). Considering an
element e belonging to A, as well as elements x and y belonging to V, and an element a belonging
to K, similarly to the proof of Theorem 4.1, it follows that:

G̃+
e ((x+ U) + (y + U)) ≥ G̃+

e (x+ U) ∧ G̃+
e (y + U),

G̃−
e ((x+ U) + (y + U)) ≤ G̃−

e (x+ U) ∨ G̃−
e (y + U),

G̃+
e (−(x+ U)) ≥ G̃+

e (x+ U),
G̃−
e (−(x+ U)) ≤ G̃−

e (x+ U).
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Moreover, for all t+ U ∈ a ∗ (x+ U) = a ◦ x+ U ,

G̃+
e (t+ U) = sup

u∈U
G+
e (t+ u)

≥ sup
u∈U

(
G+
e (t) ∧ G+

e (u)
)

= G+
e (t)

≥ inf
s∈a◦x

G+
e (s)

≥ G+
e (x),

and

G̃−
e (t+ U) = inf

u∈U
G−
e (t+ u)

≤ inf
u∈U

(
G−
e (t) ∨ G−

e (u)
)

= G−
e (t)

≤ sup
s∈a◦x

G−
e (s)

≤ G−
e (x).

Then inf
t+U∈a∗(x+U)

G̃+
e (t+ U) ≥ G+

e (x) and sup
t+U∈a∗(x+U)

G̃−
e (t+ U) ≤ G−

e (x).

Likewise, if u ∈ U , then given that t+ U ∈ a ∗ (x+ u+ U) = a ◦ (x+ u) + U , it can be concluded
that:

G̃+
e (t+ U) = sup

ú∈U
G+
e (t+ ú)

≥ sup
ú∈U

(
G+
e (t) ∧ G+

e (ú)
)

= G+
e (t)

≥ inf
s∈a◦(x+u)

U+
e (s)

≥ G+
e (x+ u),

and

G̃−
e (t+ U) = inf

ú∈U
G−
e (t+ ú)

≤ inf
ú∈U

(
G−
e (t) ∨ G−

e (ú)
)

= G−
e (t)

≤ sup
s∈a◦(x+u)

G−
e (s)

≤ G−
e (x+ u).

Hence,
inf

t+U∈a∗(x+u+U)
G̃+
e (t+ U) ≥ U+

e (x+ u),

sup
t+U∈a∗(x+u+U)

G̃−
e (t+ U) ≤ G−

e (x+ u),
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for every vector u in U .
But x+ U = x+ u+ U and a ∗ (x+ U) = a ∗ (x+ u+ U), for every u in U , thus

inf
t+U∈a∗(x+U)

G̃+
e (t+ U) = inf

t+U∈a∗(x+u+U)
G̃+
e (t+ U)

= inf
t+U∈a◦(x+u)+U

G̃+
e (t+ U)

≥ G+
e (x+ u),

and

sup
t+U∈a∗(x+U)

G̃−
e (t+ U) = sup

t+U∈a∗(x+u+U)
G̃−
e (t+ U)

= sup
t+U∈a◦(x+u)+U

G̃−
e (t+ U)

≤ G−
e (x+ u).

Therefore,

inf
t+U∈a∗(x+U)

G̃+
e (t+ U) ≥ sup

u∈U
G+
e (x+ u) = G̃+

e (x+ U),

and

sup
t+U∈a∗(x+U)

G̃−
e (t+ U) ≤ inf

u∈U
G−
e (x+ u) = G̃−

e (x+ U).

Consequently, (G̃,A) is a bipolar fuzzy soft hypervector space of V
W .

Example 4.6. Consider the bipolar fuzzy soft hypervector space (F ,A) of V = (R3,+, ◦,R) in
Example 2.9. Then for e = a, α = 0.4, β = −0.3 and U = (Fe)α,β = (Fa)0.4,−0.3 = {0} × {0} ×R,
the bipolar fuzzy soft hypervector space (G̃,A) of R3

{0}×{0}×R in Theorem 4.5, is defined by the
followings:

G̃+
a (x+ U) =


1 x ∈ U ,
0.3 x ∈ (R× {0} × R) \ U ,
0 otherwise,

G̃−
a (x+ U) =


−1 x ∈ U ,
−0.4 x ∈ (R× {0} × R) \ U ,
−0.2 otherwise,

G̃+
b (x+ U) =


1 x ∈ U ,
0.4 x ∈ (R× {0} × R) \ U ,
0.1 otherwise,

G̃−
b (x+ U) =


−1 x ∈ U ,
−0.5 x ∈ (R× {0} × R) \ U ,
−0.1 otherwise.

Example 4.7. Consider the bipolar fuzzy soft hypervector space (F ,A) of V = (Z4,+, ◦,Z2) in
Example 2.10. Then for e = d, α = 0.5, β = −0.5 and U = (Fe)α,β = (Fd)0.5,−0.5 = {0, 2}, the
bipolar fuzzy soft hypervector space (G̃,A) of Z4

{0,2} in Theorem 4.5, is defined by the followings:

G̃+
c (x+ U) =

{
1 x ∈ {0, 2}
0.3 x ∈ {1, 3} G̃−

c (x+ U) =
{

−1 x ∈ {0, 2}
−0.2 x ∈ {1, 3}
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G̃+
d (x+ U) =

{
1 x ∈ {0, 2}
0.2 x ∈ {1, 3} G̃−

d (x+ U) =
{

−1 x ∈ {0, 2}
−0.3 x ∈ {1, 3}

G̃+
e (x+ U) =

{
1 x ∈ {0, 2}
0.4 x ∈ {1, 3} G̃−

e (x+ U) =
{

−1 x ∈ {0, 2}
−0.5 x ∈ {1, 3}

5 Conclusions

The author, in references [18, 19], explored the properties of bipolar fuzzy soft hypervector spaces
by incorporating the notion of bipolar fuzzy sets. This approach seems to integrate fuzzy logic
and hypervector spaces to analyze and understand the characteristics of such spaces. It would be
fascinating to delve deeper into their findings and understand the implications of these proper-
ties. In this paper, we followed these papers and investigated some new results in the mentioned
algebraic structure. Next, we defined a hypervector space F

V = (FV ,⊕,},K) that consists of all
cosets of a bipolar fuzzy soft hypervector space (F,A). Then we proved an interesting theorem
concerning the fundamental concept of dimension in hypervector spaces. In fact, we showed that
dim F

V = dim V
W , such that V

W is the quotient hypervector space containing all cosets of W in V ,
and W is a particular subhyperspace of V . In addition, we have presented some bipolar fuzzy
soft sets over the quotient hypervector space V

W . With these results, the following topics can be
studied in the future:

- Investigation of isomorphism theorem in bipolar fuzzy soft hypervector spaces,
- Finding the applications of the introduced structure in decision making,
- Application of bipolar fuzzy soft sets over other algebraic structures/hyperstructures,
- Generalized bipolar fuzzy soft hypervector spaces based on bipolar fuzzy points,
- Dimension of bipolar fuzzy soft hypervector spaces.

References

[1] S. Abdullh, M. Aslan, K. Ullah, Bipolar fuzzy soft sets and its applications in decision making
problem, Journal of Intelligent and Fuzzy Systems, 27(2) (2014), 729–742. DOI:10.3233/IFS-
131031.

[2] N. Abughazalah, G. Muhiuddin, M.E. Elnair, A. Mahboob, Bipolar fuzzy set theory applied to
the certain ideals in BCI-algebras, Symmetry, 14(4) (2022), 815. DOI:10.3390/sym14040815.

[3] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Computers and Mathematics with
Applications, 59 (2010), 3458–3463. DOI:10.1016/j.camwa.2010.03.034.

[4] M. Akram, N.O. Alsherei, K.P. Shum, A. Farooq, Applications of bipolar fuzzy soft sets in
K-algebras, Italian Journal of Pure and Applied Mathematics, 32 (2014), 533–546.

[5] H. Aktas, N. Cagman, Soft sets and soft groups, Information Sciences, 177 (2007), 2726–2735.
DOI:10.1016/j.ins.2006.12.008.

[6] G. Ali, M. Akram, A.N. Koam, J.C.R. Alcantud, Parameter reductions of bipolar
fuzzy soft sets with their decision-making algorithms, Symmetry, 11(8) (2019), 949.
DOI:10.3390/sym11080949.

[7] R. Ameri, Fuzzy hypervector spaces over valued fields, Iranian Journal of Fuzzy Systems, 2
(2005), 37–47. DOI: 10.22111/IJFS.2005.474.



Quotient bipolar fuzzy soft sets of hypervector spaces and bipolar fuzzy soft sets of . . . 89

[8] R. Ameri, O.R. Dehghan, On dimension of hypervector spaces, European Journal of Pure and
Applied Mathematics, 1(2) (2008), 32–50.

[9] R. Ameri, O.R. Dehghan, Dimension of fuzzy hypervector spaces, Iranian Journal of Fuzzy
Systems, 8(5) (2011), 149–166.

[10] N. Cagman, S. Enginoglu, F. Citak, Fuzzy soft set theory and its applications, Iranian Journal
of Fuzzy Systems, 8(3) (2011), 137–147. DOI:10.22111/IJFS.2011.292.

[11] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publications,
2003. DOI:10.1007/978-1-4757-3714-1.

[12] B. Davvaz, I. Cristea, Fuzzy algebraic hyperstructures, Springer, 2015. DOI:10.1007/978-3-
319-14762-8.

[13] B. Davvaz, V. Leareanu-Fotea, Hyperring theory and applications, International Academic
Press, USA, 2007.

[14] O.R. Dehghan, Various kinds of fuzzy quotient hypervector spaces, Journal of Intelligent and
Fuzzy Systems, 35 (2018), 3163–3170. DOI:10.3233/JIFS-171262.

[15] O.R. Dehghan, Linear functionals on hypervector spaces, Filomat, 34(9) (2020), 3031–3043.
DOI:10.2298/FIL2009031D.

[16] O.R. Dehghan, Sum and scalar product of fuzzy subhyperspaces, Journal of Discrete Mathemat-
ical Sciences and Cryptography, 23(4) (2020), 841–860. DOI:10.1080/09720529.2019.1624061.

[17] O.R. Dehghan, Balanced and absorbing fuzzy subsets of hypervector spaces, Computers and
Mathematics with Applications, 39(2) (2020), 1–12 (Article 53). DOI:10.1007/s40314-020-
1096-x.

[18] O.R. Dehghan, An introduction to bipolar fuzzy soft hypervector spaces. DOI:10.48550/arXiv
.2310.06991.

[19] O.R. Dehghan, Study of bipolar fuzzy soft hypervector spaces. DOI:10.48550/
arXiv.2310.06944.

[20] O.R. Dehghan, M. Nodehi, Some results on soft hypervector spaces, Caspian Journal of Math-
ematical Sciences, 10(2) (2021), 224–234. DOI:10.22080/CJMS.2020.17968.1452.

[21] M. Khan, S. Anis, S. Ahmad, M. Zeeshan, Computational bipolar fuzzy soft matrices with ap-
plications in decision making problems, Journal of Intelligent and Fuzzy Systems: Applications
in Engineering and Technology, 44(6) (2023), 10241–10253. DOI: 10.3233/JIFS-221569.

[22] T. Mahmood, U.U. Rehman, A. Jaleel, J. Ahmmad, R. Chinram, Bipolar complex fuzzy
soft sets and their applications in decision-making, Mathematics, 10(7) (2022), 1048.
DOI:10.3390/math10071048.

[23] P.K. Maji, A.R. Roy, R. Biswas, An application of soft sets in a decision making problem,
Computers and Mathematics with Applications, 44 (2002), 1077–1083. DOI:10.1016/S0898-
1221(02)00216-X.

[24] F. Marty, Sur une generalization de la notion de groupe, 8th Congress des Mathematiciens
Scandinaves, Stockholm, (1934), 45–49.



90 O.R. Dehghan

[25] D. Molodtsov, Soft set theory, first results, Computers and Mathematics with Applications,
37 (1999), 19–31. DOI:10.1016/S0898-1221(99)00056-5.

[26] G. Muhiuddin, H. Harizavi, Y.B. Jun, Bipolar-valued fuzzy soft hyper BCK-ideals in hyper
BCK-algebras, Discrete Mathematics, Algorithms and Applications, 12(2) (2020), 2050018.
DOI:10.1142/S1793830920500184.

[27] M. Norouzi, R. Ameri, Some new directions in soft (fuzzy) hypermodules, Fuzzy Information
and Engineering, 14(2) (2022), 167–181. DOI:10.1080/16168658.2022.2119052.

[28] E. Ranjbar-Yanehsari, M. Asghari-Larimi, R. Ameri, Soft hypervector spaces and fuzzy soft
hypervector space, European Journal of Pure and Applied Mathematics, 2(1) (2019), 118–134.
DOI:10.29020/nybg.ejpam.v12i1.3280.

[29] M. Riaz, S.T. Tehrim, On bipolar fuzzy soft topology with decision-making, Soft Computing,
24 (2020), 18259–18272. DOI:10.1007/s00500-020-05342-4.

[30] M. Sarwar, M. Akram, S. Shahzadi, Bipolar fuzzy soft information applied to hypergraphs,
Soft Computing, 25(5) (2021), 3417–3439. DOI:10.1007/s00500-021-05610-x.

[31] M. Scafati-Tallini, Hypervector spaces, Fourth International Congress on Algebraic Hyper-
structures and Applications, Xanthi, Greece, (1990), 167–174.

[32] M. Sedghi, O.R. Dehghan, M. Norouzi, n-normed hypervector spaces, Journal of Mathematical
Sciences: Advances and Applications, 45 (2017), 41–59. DOI:10.18642/jmsaa 7100121789.

[33] A. Sezgin Sezer, A.O. Atagun, A new kind of vector space: Soft vector space, Southeast Asian
Bulletin of Mathematics, 40 (2016), 753–770.

[34] T. Vougiuklis, Hyperstructures and their representations, Hardonic Press Inc., 1994.

[35] L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353.

[36] W.R. Zhang, Bipolar fuzzy sets and relations: A computational framework for cognitive mod-
eling and multiagent decision analysis, Proceedings of the First International Conference of
the North American Fuzzy Information Processing Society Biannual Conference, San Antonio,
TX, USA, (1994), 305–309. DOI: 10.1109/IJCF.1994.375115.


	Introduction
	Preliminaries
	Quotient bipolar fuzzy soft sets relative to hypervector spaces
	Some bipolar fuzzy soft sets of quotient hypervector spaces
	Conclusions

