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Abstract

This research targets the investigation of characteristics
within the maximal product of two RL-graphs by scru-
tinizing particular types of RL-graphs. Our first step
in this quest entails introducing RL-graph concepts, fol-
lowed by defining what constitutes a strong RL-graph,
further elucidated by a practical example. Subsequently,
we lay out the connection between RL-graphs and their
maximal products. In particular, a theorem establishes
that two RL-graphs are regular if their maximal prod-
uct maintains regularity, and a parallel rule applies to
α-regular RL-graphs. Contrarily, the reverse is not in-
herently true, a claim supported by a specific example.
Nonetheless, by incorporating an additional condition, we
validate the converse. Lastly, we assert that two RL-
graphs are connected only if their maximal product is
also a connected RL-graph. In conclusion, the maximal
product of two RL-graphs holds potential in modeling
societal health metrics and road accident rates.
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1 Introduction
1.1 Fuzzy graph
Tracing back to 1736, Leonard Euler deployed graph theory to unravel the Paul Konigsberg conun-
drum [4]. Ever since, this tool has seen diverse applications in representing real-world dilemmas
across myriad scientific disciplines [2, 3]. As graph theory evolved, unveiling its potential to tackle
worldly issues, new concepts emerged to boost problem modeling accuracy.

A key innovation was Zadeh’s introduction of the fuzzy set in 1965, designed to handle uncertain
and ambiguous events [16, 17, 18]. Building on this, Kaufman pioneered the fuzzy graph concept
[7], which researchers subsequently utilized to holistically model urban development [14]. Of late,
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fuzzy graph theory is increasingly deployed to model intricate subjects [9]. Graph and fuzzy graph
theories alike have found extensive usage in diverse fields to address human-centric and everyday
problems.

1.2 Zero forcing set
Consider a graph G with a vertex set V , where in vertices are either white or black. Let Z denote
the initial set of black vertices within graph G. Following the color change rule, a vertex changes
from white to black if it only has one neighbor - a black vertex. If the application of this color
change rule results in all vertices within G turning black, then Z is deemed a zero forcing set of G.
Z(G) symbolizes the least |Z| among all zero forcing sets. The zero forcing process, responsible
for turning all white vertices black, serves as a model of a graph propagation process, a topic often
broached in computer science and mathematics as referenced in [8]. Various graph processes find
utility in modeling social or technical phenomena, such as social network analysis [6] and physics
[2]. A comprehensive survey of different applications and models is available in [5]. The zero
forcing process is employed in [1] to set a limit on the minimum rank or the maximum nullity of
a graph G.

1.3 Some motivations to applications
In 2022, Zahedi and his team proposed the concept of an L-graph (also known as an RL-graph)
as a tool to categorize and establish correlations between library books, identifying the minimal
number of books required to encompass all pertinent subjects [13]. This graph concept also offers
utility in areas such as drug classification and determining the minimum selection of drugs for
effective disease treatment. Moreover, RL-graphs are invaluable in ascertaining the fewest number
of companies necessary to fulfill all product demands. Subsequently, additional properties of
these graphs were delineated in papers [12, 19]. In a further development, scholars introduced
operations such as maximal and Kronecker products for these graphs, enabling the modeling of
more intricate problems and thereby facilitating more precise and comprehensive decisions [10, 11].
For instance, consider an educational system where both personality traits and general conditions
are crucial factors in determining system quality. We can assess these traits and conditions by
utilizing an L-graph, consequently refining the educational system. Moreover, by applying the
maximal product of two L-graphs, we can gauge the influence of each personality trait on the
general conditions. Hence, this modeling strategy can guide us toward appropriate solutions for
enhancing the educational system. Our initial review outlines this education system’s most effective
route for individual success. Also, considering two construction companies, their combined work
efficiency can be assessed using the Kronecker product. With its diverse applicability, researchers
from varying fields can exploit this tool for problem-solving. Moreover, an insightful relationship
between graphs and automata was unveiled, offering mutual benefits for researchers across both
domains.

1.4 Contribution
As we navigate an era of technological advancement and urban expansion, societal challenges have
become increasingly multifaceted. To tackle such complex issues, we require broader and more
intricate concepts that can accurately represent and propose solutions. The introduction of the
L-graph (RL-graph) concept has facilitated the modeling of complex scenarios and provided viable
solutions.
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Our present focus is on modeling even more complex problems using the maximal product of
two RL-graphs and devising corresponding solutions. In this research, we elaborate on the notion
of the maximal product of two RL-graphs. This concept facilitates the formation of a relationship
between two distinct structures and relates the influence of these structures. Furthermore, we
illustrate the diverse applications of this operator, though we highlight only two. In addition,
we scrutinize the relationships between these graphs and their operations through concepts such
as the regular RL-graph, α-regular RL-graph, and connected RL-graph. Finally, leveraging the
properties of RL-graphs and the maximal product of two RL-graphs, we present a model that
incorporates factors impacting societal health and road accident frequency. We also provide ex-
amples of these model applications and encourage researchers in these fields to empirically validate
the accuracy of these proposed solutions.

1.5 Framework
Section 2 will encompass definitions of the residuated lattice and the maximal product of two
RL-graphs, in addition to introducing several notions that will be requisite in Sections 3 and 4.
Section 3 will inaugurate a novel category of RL-graphs predicated on the memberships of vertices
and edges. Subsequently, we will elucidate some relationships between two specific RL-graphs
and their maximal product. Section 4 will then present practical applications, supplemented with
examples.

2 Preliminaries
In this section, we give some definitions for L-graph (RL-graph), which should be used in the next
section.

Definition 2.1. [15] A residuated lattice is an algebra L = (L,∧,∨,⊗,→, 0, 1) so that

1. L = (L,∧,∨, 0, 1) is a lattice (the corresponding order will be noted by ≤) with the smallest
element 0 and the greatest element 1,

2. L = (L,⊗, 1) is a commutative monoid (i.e., ⊗ is commutative, associative, and x ⊗ 1 = x
holds),

3. x⊗ y ≤ z if and only if x ≤ y → z holds (adjointness condition).

Definition 2.2. [13] G = (α, β) is called an RL-graph on a simple graph G∗ = (V,E) if α : V → L
and β : E → L are functions while L is a residuated lattice, with β(st) ≤ α(s) ⊗ α(t) for every
st ∈ E. Besides, if G∗ is a path (cycle, bipartite, complete, complete bipartite, etc) graph, then G
is called a path (cycle, bipartite, complete, complete bipartite, etc) L-graph on G∗.
If G = (α, β) is an RL-graph on G∗ = (V,E) so that β(st) = α(s)⊗ α(t), for every st ∈ E, then
G is a strong RL-graph.

Definition 2.3. [13] Let G1 = (α1, β1) and G2 = (α2, β2) be two RL-graphs on G∗
1 = (V1, E1)

and G∗
2 = (V2, E2), respectively, and c ∈ L\{1}. Then G1 and G2 are isomorphic with threshold c,

noted by G1
∼=c G2 if there exists a bijection h from V1 into V2 such that the following conditions

hold for all u, v ∈ V1:

(i) uv ∈ E1 if and only if h(u)h(v) ∈ E2,

(ii) α1(u) > c if and only if α2(h(u)) > c,
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(iii) β1(uv) > c if and only if β2(h(u)h(v)) > c.

h is an isomorphism (∼=) if and only if h is an isomorphism with threshold c for every c ∈ L\{1}.

Definition 2.4. [11] Let G = (α, β) on G∗ = (V,E) be an RL-graph that G∗ is a (k−)regular
graph. Then G is called the (k−)regular RL-graph. If α has the same value for all vertices of the
regular RL-graph G, then G is α-regular RL-graph. Additionally, if β has the same value for all
edges of the regular RL-graph G, then G is β-regular RL-graph. Besides, it is a totally regular
RL-graph if G is α-regular and β-regular RL-graph.

Definition 2.5. [10] Let G and H be two RL-graphs. Then the maximal product of two RL-graphs
G and H is defined by G ⋆ H = (α, β) on (G ⋆ H)∗ = (V,E), where

(i) V = V1 × V2,

(ii) E = {(q, q′k)(q, q′l)| q ∈ V1, q
′
kq

′
l ∈ E2} ∪ {(qi, q′)(qj , q′)| q′ ∈ V2, qiqj ∈ E1},

(iii) α(qi, q
′
k) = α1(qi) ∨ α2(q

′
k), for every (qi, q

′
k) ∈ V ,

(iv) β((qi, q
′
k)(qj , q

′
l)) =

{
α1(qi)⊗ β2(q

′
kq

′
l) if qi = qj , q

′
kq

′
l ∈ E2,

α2(q
′
k)⊗ β1(qiqj) if q′k = q′l, qiqj ∈ E1,

for every (qi, q
′
k)(qj , q

′
l) ∈ E.

3 Some results on the maximal product of two RL-graphs
In the ensuing section, we will first expound on the concept of a totally strong RL-graph, employing
an example to provide further clarity. Additionally, we establish, through a theorem, the regularity
of two RL-graphs if and only if their maximal product is likewise regular. It is also demonstrated
that α-regularity in two RL-graphs ensures the same characteristic in their maximal product.
Conversely, we provide an example to highlight that the reverse of this statement is not inherently
true. However, upon introducing an additional condition, we subsequently prove this converse. We
also present that if two RL-graphs are deemed totally strong with identical membership vertices,
then their maximal product achieves total regularity, but not total strength. A supporting example
disproves the reverse of the aforementioned statement. Following this, we introduce a condition on
two strong RL-graphs that guarantees their maximal product is also strong. Lastly, we establish
that two RL-graphs are connected if and only if their maximal product is a connected RL-graph.

Definition 3.1. Let G = (α, β) on G∗ = (V,E) be an RL-graph. Then it is a totally strong
RL-graph if it is the strong and the totally regular RL-graph.

Example 3.2. Suppose L = (P (X),∩,∪,⊗,→, ∅, X), where X = {a, b, c}, A ⊗ B = A ∩ B and

A → B =

{
X otherwise,
B if B ⊂ A,

for every A,B ∈ P (X). Then G = (α1, β1) on G∗ = (V1, E1) is

a totally strong RL-graph, as in Figure 1, where V1 = {q1, q2, q3, q4}, E1 = {q1q2, q2q3, q3q4, q1q4},
α1(qi) = {a, b} and β1(qiqj) = {a, b}, for every 1 ≤ i, j ≤ 4 and qiqj ∈ E2.

Theorem 3.3. Let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on H∗ = (V2, E2) be two
RL-graphs. Then:

(i) If G is a k-regular RL-graph, and H is a k′-regular RL-graph, then their maximal product
is a k + k′-regular RL-graph.
Generally, if G and H are two regular RL-graphs, then their maximal product is a regular
RL-graph.
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Figure 1: The RL-graphs G and H.

(ii) If the maximal product G⋆H is a regular RL-graph, then G and H are two regular RL-graphs.

Proof. (i) Suppose that their maximal product is G ⋆ H = (α, β) on (G ⋆ H)∗ = (V,E). We
know that it is valid for every (qi, q

′
j) in their maximal connect to the vertices (qi, q

′
k), for every

q′jq
′
k ∈ E2 and (ql, q

′
j), for every qiqi ∈ E1. Besides, we can say that this RL-graph is the regular

RL-graph that is the k + k′-regular RL-graph.
(ii) We know that dG⋆H(qi, qj) = dG(qi)+dH(qj). If consider that i is constant, then dG⋆H(qi, qj) =
dG(qi) + dH(qj) = k, for every 1 ≤ j ≤ n. So, dH(qj) = k′, for every 1 ≤ j ≤ n. Thus, H is the
regular RL-graph. Also, as with H, we prove that G is also a regular RL-graph.

Theorem 3.4. Let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on H∗ = (V2, E2) be two
α-regular RL-graphs. Then their maximal product is the α-regular RL-graph.

Proof. By using the definitions of α, the proof becomes clear.

Example 3.5. Suppose L in Example 3.2 and two RL-graphs G = (α1, β1) on G∗ = (V1, E1) and
H = (α2, β2) on H∗ = (V2, E2), as in Figure 2, where V1 = {q1, q2}, E1 = {q1q2}, α1(q1) = {a, b},
α1(q2) = {a, c}, β1(q1q2) = {a}, V2 = {q′1, q′2}, E2 = {q′1q′2}, α2(q

′
1) = {a, b, c}, α2(q

′
2) = {b, c}

and β2(q
′
1q

′
2) = {b, c}. Hence, G ⋆ H = (α, β) on (G ⋆ H)∗ = (V,E) is the maximal product, as

in Figure 2, where V = {q1, q2, q′1, q′2}, E = {q1q2, q′1q′2}, α((q1, q
′
1)) = α((q1, q

′
2)) = α((q2, q

′
1)) =

α((q2, q
′
2)) = {a, b, c}, β((q1, q′1)(q1, q′2)) = {b}, β((q1, q′1)(q2, q′1)) = {a}, β((q1, q′2)(q2, q′2)) = ∅ and

β((q1, q
′
2)(q2, q

′
2)) = {c}. Clearly, the RL-graph G ⋆ H is the α-regular.

Note 3.6. The aforementioned example indicates that the maximal product of two RL-graphs is
α-regular; however, their components are α-regular RL-graphs.

Theorem 3.7. If G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on H∗ = (V2, E2) are two
isomorphic RL-graphs and their maximal product is α-regular RL-graph, then G and H are α-
regular RL-graphs.

Proof. By using the definition of two isomorphic RL-graphs, the proof is straightforward.
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Figure 2: The RL-graphs G, H and G ⋆ H.

Theorem 3.8. Let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on H∗ = (V2, E2) be
totally strong RL-graphs such that α1 = α2. Then then their maximal product is a totally regular
RL-graph.

Proof. By using definitions of α and β, the proof is straightforward.

Example 3.9. Consider totally strong RL-graphs G in Example 3.2 and H = (α2, β2) on
H∗ = (V2, E2), as in Figure 1, where V2 = {q′1, q′2, . . . , q′5}, E2 = {q′1q′2, q′1q′5, q′1q′3, q′1q′4, q′2q′3, q′2q′4,
q′2q

′
5, q

′
3q

′
4, q

′
3q

′
5, q

′
4q

′
5}, α2(q

′
i) = {a, c}, β2(q

′
iq

′
j) = {a, c}, for every 1 ≤ i ≤ 5 and q′iq

′
j ∈ E2.

Then their maximal product G ⋆ H = (α, β) on (G ⋆ H)∗ = (V,E), as in Figure 3, where
V = {(qi, q′j)| 1 ≤ i ≤ 4, 1 ≤ j ≤ 5}, E = {(q1, q′j)(q2, q′j), (q2, q′j)(q3, q′j), (q3, q′j)(q4, q′j), (q1, q′j)(q4, q′j),
(qi, q

′
1)(qi, q

′
2), (qi, q

′
1)(qi, q

′
5), (qi, q

′
1)(qi, q

′
3), (qi, q

′
1)(qi, q

′
4), (qi, q

′
2)(qi, q

′
3), (qi, q

′
2)(qi, q

′
4), (qi, q

′
2)(qi, q

′
5),

(qi, q
′
3)(qi, q

′
4), (qi, q

′
3)(qi, q

′
5), (qi, q

′
4)(qi, q

′
5)| 1 ≤ i ≤ 4, 1 ≤ j ≤ 5}, α(qi, q

′
j) = {a, b, c}, for every

(qi, q
′
j) ∈ E, β(qi, q′j)(ql, q′k) = {a}, for every (qi, q

′
j)(ql, q

′
k) ∈ E. Thus, G ⋆H is the totally regular

RL-graph; however, this is not a strong RL-graph.

Figure 3: The maximal product (G ⋆ H)∗.
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Figure 4: The RL-graphs G, H and G ⋆ H.

Note 3.10. According to the above example, the maximal product of two totally strong RL-graphs
can not be a totally strong RL-graph. As a result, the maximal product of two totally strong
RL-graphs is not necessarily a totally strong RL-graph.

Example 3.11. Suppose L in Example 3.2 and two RL-graphs G = (α1, β1) on G∗ = (V1, E1) and
H = (α2, β2) on H∗ = (V2, E2), as in Figure 4, where V1 = {q1, q2}, E1 = {q1q2}, α1(q1) = {a, c},
α1(q2) = {a, c}, β1(q1q2) = ∅, V2 = {q′1, q′2, q′3}, E2 = {q′1q′2, q′1q′3, q′2q′3}, α2(q

′
1) = {a, b}, α2(q

′
2) =

{a, b, c}, α2(q
′
3) = {b}, β2(q′1q′2) = {b}, β2(q′2q′3) = {b} and β2(q

′
1q

′
3) = ∅. Hence, G⋆H = (α, β) on

(G⋆H)∗ = (V,E) is the maximal product, as in Figure 4, where V = {(q1, q′i), (q2, q′i)| 1 ≤ i ≤ 3},
E = {(q1, q′1)(q1, q′2), (q1, q′1)(q1, q′3), (q1, q′2)(q1, q′3), (q2, q′1)(q2, q′2), (q2, q′1)(q2, q′3), (q2, q′2)(q2, q′3),
(q1, q

′
1)(q2, q

′
1), (q1, q

′
2)(q2, q

′
2), (q1, q

′
3)(q2, q

′
3), }, α((qi, q′j)) = {a, b, c}, for every (qi, q

′
j) ∈ V ,

β((qi, q
′
j)(qk, q

′
l)) = ∅, for every (qi, q

′
j)(qk, q

′
l) ∈ E. Clearly, the RL-graph G ⋆ H is the totally

regular RL-graphs.

Note 3.12. The aforementioned example indicates that the maximal product of two RL-graphs is
a totally regular; however, their components are not totally regular RL-graphs.

Theorem 3.13. Let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on H∗ = (V2, E2) be two
isomorphic totally strong RL-graphs. Then their maximal product is a totally strong RL-graphs.

Proof. The proof is straightforward, using Theorem 3.3 and the definition of two isomorphic RL-
graphs.

Example 3.14. Suppose two totally strong RL-graphs G, as in Example 3.2 and K = (α2, β2)
on K∗ = (V2, E2), as in Figure 1, where V2 = {q′1, q′2, q′3, q′4}, E2 = {q′1q′3, q′1q′4, q′2q′3, q′2q′4},
α2(q

′
i) = {a, b} and β2(q

′
iq

′
j) = {a, b}, for every q′i ∈ V2 and for every qiqj ∈ E2. Clearly, these RL-

graphs are isomorphic. Then their maximal product is G⋆ K = (α, β) on (G⋆ K)∗ = (V,E), as in
Figure 5, where V = {(qi, q′j)| 1 ≤ i, j ≤ 4}, E = {(q1, q′j)(q2, q′j), (q2, q′j)(q3, q′j), (q3, q′j)(q4, q′j),
(q1, q

′
j)(q4, q

′
j), (qi, q

′
1)(qi, q

′
3), (qi, q

′
1)(qi, q

′
4), (qi, q

′
2)(qi, q

′
3), (qi, q

′
2)(qi, q

′
4)| 1 ≤ i, j ≤ 4},

α(qi, q
′
j) = {a, b}, for every (qi, q

′
j) ∈ E, β(qi, q

′
j)(ql, q

′
k) = {a, b}, for every (qi, q

′
j)(ql, q

′
k) ∈ E.

Clearly, it is a totally strong RL-graph.
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Figure 5: The maximal product (G ⋆K)∗.

Figure 6: Two isomorphic RL-graphs G and H.

Example 3.15. Suppose L = ([0, 1],∧,∨,⊗,→, 0, 1), where

a⊗ b =

{
(a+ b− 1) if a+ b ≥ 1,

0 if a+ b < 1,
and a → b =

{
1 if b− a ≥ 0,

(1− a+ b) if b− a < 0.

Also, suppose that two isomorphic RL-graphs G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2)
on H∗ = (V2, E2), as in Figure 6, where V1 = {q1, q2, q3, q4, q5}, E1 = {q1q2, q2q3, q3q4, q4q5, q1q5},
α1(qi) = 0.1, for every 1 ≤ i ≤ 5, β1(q1q2) = 0.2, β1(q2q3) = 0.3, β1(q3q4) = 0.4, β1(q4q5) = 0.7,
β1(q1q5) = 0.9, V2 = {q′1, q′2, q′3, q′4, q′5}, E2 = {q′1q′3, q′1q′4, q′2q′4, q′2q′5, q′3q′5}, α2(q

′
i) = 0.1, for every

1 ≤ i ≤ 5, β2(q
′
1q

′
3) = 0.2, β2(q

′
3q

′
5) = 0.3, β2(q

′
5q

′
2) = 0.4, β2(q

′
2q

′
4) = 0.7, and β2(q

′
1q

′
4) = 0.9.

Hence, their maximal product is G⋆ K = (α, β) on (G⋆ K)∗ = (V,E), as in Figure 7, where V =
{(qi, qj)| 1 ≤ i, j ≤ 5}, E = {(qi, q′1)(qi, q′3), (qi, q′3)(qi, q′5), (qi, q′5)(qi, q′2), (qi, q′2)(qi, q′4), (qi, q′1)(qi, q′4),
(q1, q

′
i)(q2, q

′
i), (q2, q

′
i)(q3, q

′
i), (q3, q

′
i)(q4, q

′
i), (q4, q

′
i)(q5, q

′
i), (q1, q

′
i)(q5, q

′
i)| 1 ≤ i ≤ 5}, α((qi, qj)) =

0.1, for every (qi, qj) ∈ V and β((qi, q
′
j)(ql, q

′
k)) = 0, for every (qi, q

′
j)(ql, q

′
k) ∈ E. Clearly, it is a

totally strong RL-graphs.

Note 3.16. The aforementioned example indicates that the maximal product of two isomorphic
RL-graphs is a totally strong; however, their components are not totally strong RL-graphs.

Theorem 3.17. If G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on H∗ = (V2, E2) are two
connected RL-graphs if and only if their maximal product, G⋆ K = (α, β) on (G⋆ K)∗ = (V,E),
is also a connected RL-graphs.



Some applications of maximal product in RL-graphs 89

Figure 7: The graph (G ⋆ H)∗.

Proof. (⇒): Suppose the vertex (qi, q
′
j) ∈ V such that qi ∈ V1 and q′j ∈ V2. Hence, sine G is

connected, there exists at least one path so that this vertex is connected to the (qk, q
′
j) ∈ V for

every qk ∈ V1. Also, H is connected, there exists at least one path so that this vertex is connected
to the (qi, q

′
l) ∈ V for every ql ∈ V2. Therefore, their maximal product is connected RL-graphs.

(⇐): The proof same as above with some modifications.

Example 3.18. Consider two connected RL-graphs G and H in Example 3.9. We can see that
their maximal product is connected RL-graph.

4 Applications
In today’s era, marked by rapid technological progression and urban expansion, social issues have
evolved to exhibit unprecedented complexity. Hence, addressing these challenges necessitates the
implementation of sophisticated, broad-ranging concepts capable of engineering and proposing
solutions. The advent of L-graphs (or RL-graphs) empowered us to model such complex issues
and devise problem-solving strategies. Currently, we aim to model even more intricate scenar-
ios employing the concept of the maximal product of two RL-graphs and subsequently propose
solutions.

Initially, we introduce a theorem related to the maximal product of two RL-graphs. Leveraging
this notion alongside the concepts of RL-graphs and their maximal products, we construct a model
of societal health. Moreover, utilizing Theorem 4.1, we propose an expedited pathway to enhance
societal health, elucidated further through a practical example. This section also delves into
factors influencing road accident rates, bifurcated into personal and societal elements. Through
our modeling, we advocate for governmental emphasis on ameliorating public factors to mitigate
road accident frequency.
Theorem 4.1. [10] Let G and H be two RL-graphs. Then
(i) If |Z(G)| × |V2| < |Z(H)| × |V1|, then Z(GH) = {(x, y)| x ∈ Z(G), y ∈ V2},

|Z(GH)| = |Z(G)| × |V2|, and S(Z(GH)) = S(Z(G)), which S(Z(G)) is the number of
steps in which all vertices of G are black.

(ii) If |Z(H)| × |V1| < |Z(G)| × |V2|, then

Z(GH) = {(x, y)| x ∈ V1, y ∈ Z(H)},
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|Z(GH)| = |Z(H)| × |V1|, and S(Z(GH)) = S(Z(H)).

(iii) If |Z(H)|×|V1| = |Z(G)|× |V2|, then the maximal product of two RL-graphs has at least two
zero forcing sets, where Z1(GH) = {(x, y)| x ∈ Z(G), y ∈ V2} with S(Z1(GH)) = S(Z(G))
and Z2(GH) = {(x, y)| x ∈ V1, y ∈ Z(H)} with S(Z2(GH)) = S(Z(H)).

Application 4.2. Societal health comprises two facets: personal hygiene and public health, both
crucial to determining overall health quality. Personal hygiene encompasses elements like individ-
ual grooming, consumption of nutritious food, regular exercise, and consistent medical check-ups.
Conversely, public health is influenced by the quality of healthcare facilities, medical expertise, and
the degree of disease awareness dissemination.

To model societal health, we use two RL-graphs, G and H, as personal and public health proxies,
respectively. Every individual factor within these categories is symbolized as a vertex in these RL-
graphs. An edge connecting the corresponding vertices represents a meaningful correlation between
factors. For instance, in RL-graph G, which models personal health, the mutual dependency between
personal grooming and regular medical consultations is indicated by an edge linking their respective
vertices. Utilizing RL-graphs G and H, we analyze personal and societal factors to improve overall
health conditions. Furthermore, we harness the maximal product of these RL-graphs to quantify the
influence of each personal health factor on broader societal conditions. To ascertain this influence,
we incorporate α and β, which encapsulate the impact of each new condition (a fusion of personality
traits and societal conditions) on one another.
Let L = ({1, 2, . . . , 10},∨,∧,⊗,→, 1, 10), where

a⊗ b =

{
(a+ b− 10) if a+ b > 10,

1 if a+ b ≤ 10,
and a → b =

{
10 if b− a ≥ 0,

(10− a+ b) if b− a < 0,

and let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on H∗ = (V2, E2) be two RL-graphs, as
in Figure 8, where V1 = {personal grooming(q1), use of
healthy foods(q2), regular exercise (q3), regular visits to the doctor(q4)}, E1 = {q1q2, q1q4, q2q4, q3q4},
α1(qi) = the amount of qi, β1(qiqj) = α1(qi)⊗ α1(qj), for every qiqj ∈ E1, V2 = {treatment centers
(q′1), doctors’ expertise(q′2),notification for all types of diseases(q′3)}, E2 = {q′1q′2, q′1q′3}, α2(q

′
k) =

quality of q′k, for every k = 1, 2, 3 and β2(q
′
iq

′
j) = α2(q

′
i) ⊗ α2(q

′
j), for every q′iq

′
j ∈ E2. Be-

sides, their maximal product is G ⋆ H = (α, β) on (G ⋆ H)∗ = (V,E), as in Figure 8, where V =
{(qi, q′1), (qi, q′2), (qi, q′3)|1 ≤ i ≤ 4}, E = {(q1, q′i)(q2, q′i), (q1, q′i)(q4, q′i), (q2, q′i)(q4, q′i), (q3, q′i)(q4, q′i),
(qj , q

′
1)(qj , q

′
2), (qj , q

′
1)(qj , q

′
3)}, α((qi, q′j)) = α1(qi)∨α2(q

′
j), for every (qi, q

′
j) ∈ V , β((qi, q′j)(qi, q′k)) =

α1(qi)⊗ β2(q
′
jq

′
k), for every q′jq

′
k ∈ E2 and 1 ≤ i ≤ 4, and β((qi, q

′
j)(ql, q

′
j)) = α2(q

′
j)⊗ β1(qiql), for

every qiql) ∈ E1 and 1 ≤ j ≤ 3. We can calculated that the zero forcing sets of G are five sets
Z1(G) = {q1, q2}, Z2(G) = {q1, q3}, Z3(G) = {q1, q4}, Z4(G) = {q2, q3}, and Z5(G) = {q2, q4},
and the zero forcing sets of H are two sets Z1(H) = {q′1} and Z2(H) = {q′3}. Also, we know that
S(Z(G)) = 3, for every zero forcing set and S(Z(H)) = 3, for every zero forcing set. Also, since

4 = |Z(H)| × |V1| < |Z(G)| × |V2| = 6,

by according Theorem 4.1, we have

Z(G ⋆ H) = Z(GH) = {(x, y)| x ∈ V1, y ∈ Z(H)}, |Z(GH)| = |Z(H)| × |V1| = 4,

and
S(Z(GH)) = S(Z(H)) = 3.

In general, improving the quality of a society’s system increases the Z(H) rate. Therefore, it can
be seen that to improve the society’s system, how to implement public health is important.
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Figure 8: Graphs G∗ and H∗, and the maximal product of RL-graphs G and H.

Remark 4.3. Significant resources are allocated in various societies towards enhancing healthcare
infrastructure, advancing medical knowledge and expertise, and promoting disease awareness. Our
method enables the visualization of the justification for this considerable investment, underscoring
its importance. Moreover, it highlights that enhancing public health constitutes one of the fastest
pathways to overall societal health improvement.

Example 4.4. Let G and H be two RL-graphs that are modeling of personal and general hygiene,
where α1(qi) = 6, for every 1 ≤ i ≤ 4, β1(qiqj) = 2, for every qiqj ∈ E1, α2(q

′
i) = 8, for every

1 ≤ i ≤ 3, β2(q
′
iq

′
j) = 6, for every q′iq

′
j ∈ E2. Then their maximal product is G ⋆ H = (α, β)

on (G ⋆ H)∗ = (V,E), as in Application 4.2, where α((qi, q
′
j)) = 8, for every (qi, q

′
j) ∈ V ,

β((qi, q
′
j)(qi, q

′
k)) = 2, for every q′jq

′
k ∈ E2 and 1 ≤ i ≤ 4, and β((qi, q

′
j)(ql, q

′
j)) = 1, for every

qiql ∈ E1 and 1 ≤ j ≤ 3.

Remark 4.5. The aforementioned example underscores how enhancing public health can positively
influence societal health at large. We thereby urge communities to focus their efforts on uplifting
the overall well-being of their members.

Application 4.6. Road accidents are influenced by a multitude of factors, which can be categorized
into two categories: personal and societal. Personal factors encompass an individual’s driving skills,
their understanding of traffic regulations, adherence to these rules, focus while driving, and the pre-
driving technical inspection of the vehicle. In contrast, societal factors include the instillation of
obedience to traffic rules, law enforcement’s surveillance of traffic regulation compliance, technical
inspection of market vehicles, and measures to ensure road safety.

To evaluate the factors contributing to road accidents, we utilize two RL-graphs, G and H,
which represent personal and societal factors, respectively. Every individual factor is symbolized
as a vertex within these RL-graphs, and meaningful relationships between factors are represented
by edges connecting their respective vertices.

For example, in RL-graph G, which models personal factors, an edge connects the vertex
symbolizing a person’s driving ability and the one representing their understanding of traffic rules,
illustrating their interdependence. Using RL-graphs G and H, we can assess personal and societal
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conditions with a view to reducing road accidents. Moreover, by using the maximal product of these
RL-graphs, we can discern the influence of each personal factor on broader societal conditions.
We employ α and β to indicate the impact of each new condition, derived from a mix of personal
traits and societal conditions, on one another.
Let L = ({1, 2, . . . , 10},∨,∧,⊗,→, 1, 10), where

a⊗ b =

{
(a+ b− 10) if a+ b > 10,

1 if a+ b ≤ 10,
and a → b =

{
10 if b− a ≥ 0,

(10− a+ b) if b− a < 0,

and let G = (α1, β1) on G∗ = (V1, E1) and H = (α2, β2) on H∗ = (V2, E2) be two RL-graphs, as
in Figure 9, where V1 = {person’s driving ability(q1), person’sknowledge regarding traffic rules(q2),
compliance with traffic rules(q3), person’s consciousness while driving(q4), technically checking the
car before driving(q5)}, E1 = {q1q2, q1q3, q1q4, q1q5, q2q3, q2q4, q2q5, q3q4, q3q5}, α1(qi) = the amount
of qi, β1(qiqj) = α1(qi)⊗ α1(qj), for every qiqj ∈ E1, V2 = {cultivation to obey traffic rules(q′1), police
monitoring of traffic rules(q′2), technically checkingthe cars in the market(q′3), road safety(q′4)}, E2 =
{q′1q′2, q′2q′3, q′2q′4}, α2(q

′
k) = quality of q′k, for every k = 1, 2, 3 and β2(q

′
iq

′
j) = α2(q

′
i)⊗ α2(q

′
j), for

every q′iq
′
j ∈ E2. Besides, their maximal product is G⋆H = (α, β) on (G⋆H)∗ = (V,E), as in Figure

10, where V = {(qi, q′1), (qi, q′2), (qi, q′3), (qi, q′4)| 1 ≤ i ≤ 5}, E = {(q1, q′i)(q2, q′i), (q1, q′i)(q3, q′i), (q1, q′i)
(q4, q

′
i), (q1, q

′
i)(q5, q

′
i), (q2, q

′
i)(q3, q

′
i), (q2, q

′
i)(q4, q

′
i), (q2, q

′
i)(q5, q

′
i), (q3, q

′
i)(q4, q

′
i), (q4, q

′
i)(q5, q

′
i), (qj , q

′
1)

(qj , q
′
2), (qj , q

′
2)(qj , q

′
3), (qj , q

′
2)(qj , q

′
4)}, α((qi, q′j)) = α1(qi) ∨ α2(q

′
j), for every (qi, q

′
j) ∈ V ,

β((qi, q
′
j)(qi, q

′
k)) = α1(qi)⊗ β2(q

′
jq

′
k),

for every q′jq
′
k ∈ E2 and 1 ≤ i ≤ 5, and β((qi, q

′
j)(ql, q

′
j)) = α2(q

′
j) ⊗ β1(qiql), for every qiql) ∈ E1

and 1 ≤ j ≤ 4. We can calculated that one of zero forcing sets of G is Z1(G) = {q1, q4, q5}, and
one of zero forcing sets of H is Z1(H) = {q′1, q′2}.

Also, we know that S(Z(G)) = 3, for every zero forcing set and S(Z(H)) = 3, for every zero
forcing set. Also, since

10 = |Z(H)| × |V1| < |Z(G)| × |V2| = 12,

by according Theorem 4.1, we have

Z(G ⋆ H) = Z(GH) = {(x, y)| x ∈ V1, y ∈ Z(H)}, |Z(GH)| = |Z(H)| × |V1| = 10,

and
S(Z(GH)) = S(Z(H)) = 3.

In general, the rate of road accidents can be reduced by increasing the Z(H) rate.
Therefore, it is important to implement public factors to reduce the number of road accidents.
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Figure 10: The graph (G ⋆ H)∗.

Figure 9: Graphs G∗ and H∗.

Remark 4.7. We often observe individuals who possess adequate personal driving skills yet are
involved in road accidents, resulting in injuries. Our model demonstrates that to mitigate the
incidence of road accidents, governments should prioritize the enhancement of societal factors.

Example 4.8. Let G and H be two RL-graphs that are modeling the amount of road accidents,
where α1(qi) = 9, for every 1 ≤ i ≤ 5, β1(qiqj) = 8, for every qiqj ∈ E1, α2(q

′
i) = 5, for every

1 ≤ i ≤ 4, β2(q
′
iq

′
j) = 1, for every q′iq

′
j ∈ E2. Then their maximal product is G ⋆ H = (α, β)

on (G ⋆ H)∗ = (V,E), as in Application 10, where α((qi, q
′
j)) = 9, for every (qi, q

′
j) ∈ V ,

β((qi, q
′
j)(qi, q

′
k)) = 1, for every q′jq

′
k ∈ E2 and 1 ≤ i ≤ 5, and β((qi, q

′
j)(ql, q

′
j)) = 3, for every

qiql ∈ E1 and 1 ≤ j ≤ 4.

5 Conclusion
This study endeavored to define and elucidate the maximal product of two specific types of RL-
graphs. It utilized the maximal product of two RL-graphs to model societal health and the rate of
road accidents, proposing the most expedient way to improve societal health. Moreover, we suggest
that governments concentrate their efforts on improving societal factors to diminish road accident
rates. Mirroring the way scientists explore biological issues to identify optimal treatments for



94 E. Raisi Sarbizhan

specific diseases, we used the RL graph structure to produce comprehensive insights. Ultimately,
our aim was to identify the most efficient solution to a given problem using the available data.
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