Volume 3, Number 3, (2022), pp. 1-21

Prime double-framed soft bi-ideals of ordered semigroups

T. Asif ${ }^{1}$, Mohammed. M. Khalaf ${ }^{2}$ and A. Khan ${ }^{3}$
${ }^{1}$ Department of Mathematics and Statistics, The University of Haripur, Haripur, KP, Pakistan
${ }^{1}$ Higher Institute of Engineering and Technology King Marriott, P.O. Box 3135, Egypt
${ }^{2}$ Faculty of Engineering, Arab Academy for Science and Technology and Maritime Transport (AASTMT), Aswan Branch, Egypt
${ }^{3}$ Department of Mathematics, Abdul Wali Khan University, Mardan, KPK, Pakistan

tauseefmath@yahoo.com, khalfmohammed2003@aast.edu, azhar4set@yahoo.com

Abstract

The notions of a prime (strongly prime, semiprime, irreducible, and strongly irreducible) double-framed soft bi-ideals (briefly, prime, (strongly prime, semiprime, irreducible and strongly irreducible) DFS bi-ideals) in ordered semigroups are introduced and related properties are investigated. Several examples of these notions are provided. The relationship between prime and strongly prime, irreducible and strongly irreducible DFS bi-ideals are considered and characterizations of these concepts are established. The Characterizations of regular and intraregular ordered semigroups in terms of these notions are studied.

Article Information

Corresponding Author:
Mohammed. M. Khalaf;
Received: September 2021;
Revised: December 2021;
Accepted: December 2021;
Paper type: Original.
Keywords:
Int-uni DFS set, DFS semigroups, DFS bi-ideals, strongly prime, irreducible.

1 Introduction

The notion of soft sets was introduced in 1999 by Molodtsov [24] as a new mathematical tool for dealing with uncertainties. Due to its importance, it has received much attention in the mean of algebraic structures such as groups (Cagman and Enginoglu [5]), semirings (Feng et al. [7]), rings (Acar et al. [1]), ordered semigroups (Jun et al. [11]). Also Feng [6] considered soft rough sets and applied it to group decision making problems. Jun et al. [11] applied the notion of soft set theory to ordered semigroups and introduced the notions of (trivial, whole) soft ordered semigroups, soft ordered subsemigroups, soft r-ideals, soft l-ideals and r-idealistic and l-idealistic soft ordered semigroup. They investigated various properties of ordered semigroups using these notions. In
(Khan et al. [21]) further extended the notions of uni-soft and int-soft sets into double-framed soft set theory given by Jun and Ahn in [9] and introduced the notions of double-framed soft l-ideals and r-ideals in ordered semigroups. Jun et al. [9] introduced the notion of double-framed soft sets (briefly, DFS sets) and applied it to BCK/BCI-algebra. They discussed double-framed soft algebra (briefly DFS-algebra) and investigated related properties. Yousafzai et al. [29] applied the notion of double-framed soft sets to non-associative ordered semigroups and investigated various results. Moreover, double-framed soft sets are further elaborated in non-associative ordered semigroups [20]. Further, several researchers applied the notion of doubleframed soft sets in diverse fields of algebra. For instance, Asif et al. [3] discussed ideal theory in ordered AG-groupoid based on double-framed soft sets. Also, Asif and coauthors [2] determined fully prime double-framed soft ordered semigrouops. For further reading on ordered semigroups, soft sets and double-framed soft sets we refer the reader to references ($[8,10,12,13,14,15,16,17,18,19,22,23,26,27,28,30])$.

In this paper, we apply the concept of DFS-set in ordered semigroups and the notions of a prime (strongly prime, semiprime, irreducible, and strongly irre-ducible) double-framed soft bi-ideals (briefly, prime, (strongly prime, semiprime, irreducible and strongly irreducible) DFS bi-ideals) in ordered semigroups are introduced and related properties are investigated. Several related examples of these notions are provided. The relationship between prime and strongly prime, irreducible and strongly irreducible DFS bi-ideals are considered and characterizations of these concepts are established. The Characterizations of regular and intra-regular ordered semigroups in terms of these notions are studied.

2 Preliminaries

By an ordered semigroup, we mean a system $(S, ., \leq)$ in which the following are satisfied:
(OS1) ($S,$.) is a semigroup,
(OS2) (S, \leq) is a poset,
(OS3) $x \leq y \Rightarrow a x \leq a y$ and $x a \leq y a$ for all $x, y, a \in S$.
Let $\emptyset \neq A \subseteq S$, we denote $(A]$ by $(A]:=\{x \in S / x \leq a$ for some $a \in A\}$. If $A=\{a\}$, then we write (a] instead of (\{a\}]. For any nonempty subsets A, B of S, we denote by $A B:=\{A B / a \in$ $A, b \in B\}$.

Definition 2.1. An element e of an ordered semigroup S is called an identity element if $x e=$ ex $=x$ for all $x \in S$.

Definition 2.2. A non-empty subset A of an ordered semigroup S is called a sub-semigroup of S if $A^{2} \subseteq A$.

In (Kehayopulu and Tesinglis 18,19$]$), defined that a nonempty subset A of an ordered semigroup S is called a left (resp., right) ideal of S if:
(1) $S A \subseteq A$ (resp., $A S \subseteq A$),
(2) If $b \in B$ and $a \in S$ such that $a \leq b$, then $a \in B$..

If A is both a left and a right ideal of S, then A is called a two-sided ideal or simply an ideal of S.

Definition 2.3. A subsemigroup A of an ordered semigroup S is called a bi-ideal of S if:
(1) $A S A \subseteq A$,
(2) If $b \in B$ and $a \in S$ such that $a \leq b$, then $a \in B$.

Definition 2.4. An ordered semigroup S is called regular 19] if for every $a \in S$, there exists $x \in S$ such that $a \leq a x a$, or equivalently,
(i) $a \in(a S a] \forall a \in S$.
(ii) $A \subseteq(A S A] \forall A \subseteq S$.

Definition 2.5. An ordered semigroup S is called intra-regular [19] if for every $a \in S$, there exist $y, z \in S$ such that $a \leq y a^{2} z$, or equivalently,
(i) $a \in\left(S a^{2} S\right] \forall a \in S$.
(ii) $A \subseteq\left(S A^{2} S\right] \forall A \subseteq S$.

Lemma 2.6. (cf: 21]) Let S be an ordered semigroup. Then the following are equivalent:
(i) S is both regular and intra-regular.
(ii) $B=\left(B^{2}\right]$ for every bi-ideal B of S.
(iii) $B_{1} \cap B_{2}=\left(B_{1} B_{2}\right] \cap\left(B_{2} B_{1}\right]$ for all bi-ideals B_{1}, B_{2} of S.
(iv) $R \cap L=(R L] \cap(L R]$ for every right ideal R and every left ideal L of S.
(v) $R(a) \cap L(a)=(R(a) L(a)] \cap(L(a) R(a)]$ for every $a \in S$.

In the following we recall the concept of a soft set given by Sezgin and Atagun in [4]. Throughout this article, S will represent an ordered semigroup unless otherwise stated. The initial universe set will be denoted by U, E is a set of parameters, $P(U)$ is the power set of U and $A, B \subseteq E$.

Definition 2.7. Let U be an initial universe set, E a set of parameters, $P(U)$ the power set of U and $A \subseteq E$. Then a soft set f_{A} over U is a function defined by: $f_{A}: E \rightarrow P(U)$ such that $f_{A}(x)=\emptyset$, if $x \notin A$.

Here f_{A} is called an approximate function. A soft set over U can be represented by the set of ordered pairs give below:

$$
f_{A}:=\left\{\left(x, f_{A}(x)\right): x \in E, f_{A}(x) \in P(U)\right\} .
$$

It is clear that a soft set is a parameterized family of subsets of U. The set of all soft sets is denoted by $S(U)$.

Definition 2.8. Let $f_{A}, f_{B} \in S(U)$. Then f_{A} is a soft subset of f_{B}, denoted by $f_{A} \widetilde{\subseteq} f_{B}$ if $f_{A}(x) \subseteq f_{B}(x)$ for all $x \in S$. Two soft sets f_{A}, f_{B} are said to be equal soft sets if $f_{A} \widetilde{\subseteq} f_{B}$ and $f_{B} \widetilde{\subseteq} f_{A}$ and is denoted by $f_{A} \cong f_{B}$.

Definition 2.9. Let $f_{A}, f_{B} \in S(U)$. Then the union of f_{A} and f_{B}, denoted by $f_{A} \tilde{\cup} f_{B}$, is defined by $f_{A} \tilde{\cup} f_{B}=f_{A \cup B}$, where $\left(f_{A} \tilde{\cup} f_{B}\right)(x)=f_{A}(x) \tilde{\cup} f_{B}(x)$, for all $x \in E$.

Definition 2.10. Let $f_{A}, f_{B} \in S(U)$. Then the intersection of f_{A} and f_{B}, denoted by $f_{A} \tilde{\cap} f_{B}$, is defined by $f_{A} \tilde{\cap} f_{B}=f_{A \cap B}$, where $\left(f_{A} \tilde{\cap} f_{B}\right)(x)=f_{A}(x) \tilde{\cap} f_{B}(x)$, for all $x \in E$.

Throughout this paper, let $E=S$, where S is an ordered semigroup, unless otherwise stated.
Definition 2.11. (cf. 25]) Let $f_{A}, f_{B} \in S(U)$. Then the soft product of f_{A} and f_{B}, denoted by $f_{A} \sim f_{B}$, is defined by:

$$
\left(f_{A} \sim f_{B}\right)(x)= \begin{cases}\bigcup_{(y, z) \in A_{x}}\left\{f_{A}(y) \cap g_{B}(z)\right\} & \text { if } A_{x} \neq \emptyset \\ \emptyset & \text { if } A_{x}=\emptyset\end{cases}
$$

where $A_{x}=\{(y, z) \in S \times S / x \leq y z\}$.
Definition 2.12. (Jun et al. [9]) Let $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be a DFS-set. Let γ, δ be two subsets.U. Then, the γ-inclusive set and the δ-exclusive set of $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$, denoted by $i_{A}\left(f_{A}^{+} ; \gamma\right)$ and $e_{A}\left(f_{A}^{-} ; \delta\right)$, respectively, are defined as follows:

$$
\begin{aligned}
i_{A}\left(f_{A}^{+} ; \gamma\right) & :=\left\{x \in A / f_{A}^{+}(x) \supseteq \gamma\right\} \\
e_{A}\left(f_{A}^{-} ; \delta\right) & :=\left\{x \in A / f_{A}^{-}(x) \subseteq \delta\right\}
\end{aligned}
$$

Definition 2.13. The set

$$
D F_{A}\left(f_{A}^{+} ; f_{A}^{-}\right)_{(\gamma, \delta)}:=\left\{x \in A / f_{A}^{+}(x) \supseteq \gamma, f_{A}^{-}(x) \subseteq \delta\right\}
$$

is called a double-framed soft including set (cf. 10]) of $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$. It is clear that

$$
D F_{A}\left(f_{A}^{+} ; f_{A}^{-}\right)_{(\gamma, \delta)}:=i_{A}\left(f_{A}^{+} ; \gamma\right) \cap e_{A}\left(f_{A}^{-} ; \delta\right)
$$

Definition 2.14. (cf. [2]) Let $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{A}=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ be two double-framed soft sets of an ordered semigroup $(S, ., \leq)$ over U. Then the uni-int soft product, denoted by $f_{A} \diamond g_{B}=\left\langle\left(f_{A}^{+}{ }^{\sim} g_{A}^{+}, f_{A}^{-}{ }^{*} g_{A}^{-}\right) ; A\right\rangle$ is defined by to be a double-framed soft set of S over U, in which $f_{A}^{+} \stackrel{\sim}{\circ} g_{A}^{+}$and $f_{A}^{-} \widetilde{*}^{-} g_{A}^{-}$are mappings from S to $P(U)$, given as follows:

Let $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{A}=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ be two double-framed soft sets of an ordered AG-groupoid S over U. Then the uni-int soft product, denoted by $f_{A} \diamond g_{A}=\left\langle\left(f_{A}^{+} \sim g_{A}^{+}, f_{A}^{-} \tilde{\star}^{-} g_{A}^{-}\right) ; A\right\rangle$ is defined to be a double-framed soft set of S over U, in which $f_{A}^{+} \sim g_{A}^{+}$and $f_{A}^{-} \tilde{\star}^{*} g_{A}^{-}$are mapping from S to $P(U)$, given as follows:

$$
\begin{gathered}
f_{A}^{+} \stackrel{\sim}{\circ} g_{A}^{+}: S \longrightarrow P(U), x \longmapsto \begin{cases}\bigcup_{(y, z) \in A_{x}}\left\{f_{A}^{+}(y) \cap g_{A}^{+}(z)\right\} & \text { if } A_{x} \neq \emptyset \\
\emptyset & \text { if } A_{x}=\emptyset\end{cases} \\
f_{A}^{-} \stackrel{\sim}{*} g_{A}^{-}: S \longrightarrow P(U), x \longmapsto \begin{cases}\bigcap_{(y, z) \in A_{x}}\left\{f_{A}^{-}(y) \cup g_{A}^{-}(z)\right\} & \text { if } A_{x} \neq \emptyset \\
U & \text { if } A_{x}=\emptyset\end{cases}
\end{gathered}
$$

Let $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{A}=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ be two double-framed soft sets over a common universe set U. Then $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is called a double-framed soft subset (briefly, DFS-subset) (cf. [9]) of $\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$, denote by $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle \sqsubseteq\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ if
(i) $A \subseteq B$,
(ii) $(\forall e \in A)\binom{f_{A}^{+}$and g_{A}^{+}are identical approximations $\left(f_{A}^{+}(e) \subseteq g_{A}^{+}(e)\right)}{f_{A}^{-}$and g_{A}^{-}are identical approximations $\left(f_{A}^{-}(e) \supseteq g_{A}^{-}(e)\right)}$.

For two DFS-sets $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{A}=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ over U are said to be equal, denoted by $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$, if $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle \sqsubseteq\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ and $\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle \sqsubseteq$ $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$.

For two DFS-sets $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{A}=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ over U, the DFS int-uni set (cf. [9]) of $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$, is defined to be a DFS-set $\left\langle\left(f_{A}^{+} \cap g_{A}^{+}, f_{A}^{-} \cup g_{A}^{-}\right) ; A\right\rangle$, where $f_{A}^{+} \cap g_{A}^{+}$and $f_{A}^{-} \cup g_{A}^{-}$are mapping given as follows:

$$
\begin{aligned}
& f_{A}^{+} \cap g_{A}^{+} \quad: \quad A \longrightarrow P(U), x \longmapsto f_{A}^{+}(x) \cap g_{A}^{+}(x) \\
& f_{A}^{-} \cup g_{A}^{-} \quad: \quad A \longrightarrow P(U), x \longmapsto f_{A}^{-}(x) \cup g_{A}^{-}(x)
\end{aligned}
$$

It is denoted by $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle \sqcap\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle=\left\langle\left(f_{A}^{+} \cap g_{A}^{+}, f_{A}^{-} \cup g_{A}^{-}\right) ; A\right\rangle$.

Definition 2.15. (cf. [7]) A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called a double-framed soft semigroup (briefly, DFS semigroup) of S over U if it satisfies:

$$
f_{A}^{+}(x y) \supseteq f_{A}^{+}(x) \cap f_{A}^{+}(y) \text { and } f_{A}^{-}(x y) \subseteq f_{A}^{-}(x) \cup f_{A}^{-}(y)
$$

for all $x, y \in S$.
Definition 2.16. (cf. [2]) A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called
(i) a double-framed soft l-ideal (briefly, DFS-l-ideal of S over U if
(a) $f_{A}^{+}(x y) \supseteq f_{A}^{+}(y)$ and $f_{A}^{-}(x y) \subseteq f_{A}^{-}(y)$ and
(b) $x \leq y \Longrightarrow f_{A}^{+}(x) \supseteq f_{A}^{+}(y)$ and $f_{A}^{-}(x) \subseteq f_{A}^{-}(y), \forall x, y \in S$.
(ii) a double-framed soft r-ideal (briefly, DFS- r-ideal of S over U if
(a) $\left(f_{A}^{+}(x y) \supseteq f_{A}^{+}(x)\right.$ and $f_{A}^{-}(x y) \subseteq f_{A}^{-}(x)$
(b) $x \leq y \Longrightarrow f_{A}^{+}(x) \supseteq f_{A}^{+}(y)$ and $f_{A}^{-}(x) \subseteq f_{A}^{-}(y), \forall x, y \in S$.
(iii) a double-framed soft ideal (briefly, DFS ideal) of S over U, if it is both a double-framed soft l - and r-ideal of S over U.

Definition 2.17. (cf. [2]) A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called an idempotent if $f_{A} \diamond f_{A}=f_{A}$ i.e., $f_{A}^{+} \sim f_{A}^{+}=f_{A}^{+}$and $f_{A}^{-} \approx f_{A}^{-}=f_{A}^{-}$.

Definition 2.18. (cf. [2]) A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called double-framed bi-ideal (briefly, DFS-bi-ideal of S over U if
(i) $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a double-framed soft semigroup (briefly, DFS semigroup) of S,
(ii) $\left(f_{A}^{+}(x y z) \supseteq f_{A}^{+}(x) \cap f_{A}^{+}(z)\right.$ and $f_{A}^{-}(x y z) \subseteq f_{A}^{-}(x) \cup f_{A}^{-}(z)$,
(iii) $x \leq y \Longrightarrow f_{A}^{+}(x) \supseteq f_{A}^{+}(y)$ and $f_{A}^{-}(x) \subseteq f_{A}^{-}(y), \forall x, y \in S$.

3 Prime and semiprime double-framed soft bi-ideals

In this section, we define prime (resp., strongly prime, irreducible and strongly irreducible) doubleframed soft bi-ideals of an ordered semigroup S over U. We characterize ordered semigroups by the properties of these notions.

Definition 3.1. A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called a prime (resp., strongly prime) double-framed soft bi-ideal (briefly, PDFS bi-ideal (resp., SPDFS bi-ideal)) of S over U if $g_{B} \diamond h_{C} \sqsubseteq f_{A}\left(\right.$ resp., $\left.\left(g_{B} \diamond h_{C}\right) \sqcap\left(h_{C} \diamond g_{B}\right) \sqsubseteq f_{A}\right)$ implies $g_{B} \sqsubseteq f_{A}$ or $h_{C} \sqsubseteq f_{A}$ (resp., g_{B} $\sqsubseteq f_{A}$ or $\left.h_{C} \sqsubseteq f_{A}\right)$. That is, $g_{B}^{+} \sim h_{C}^{+} \subseteq f_{A}^{+}$and $g_{B}^{-} \sim h_{C}^{-} \supseteq f_{A}^{-}\left(\right.$resp., $\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right) \subseteq f_{A}^{+}$ and $\left.\left(g_{B}^{-} * h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} * g_{B}^{-}\right) \supseteq f_{A}^{-}\right)$imply $g_{B}^{+} \simeq f_{A}^{+}$or $h_{C}^{+} \simeq f_{A}^{+}$and $g_{B}^{-} \supseteq f_{A}^{-}$or $h_{C}^{-} \supseteq f_{A}^{-}$ (resp., $g_{B}^{+} \simeq f_{A}^{+}$or $h_{C}^{+} \simeq f_{A}^{+}$and $g_{B}^{-} \supseteq f_{A}^{-}$or $h_{C}^{-} \supseteq f_{A}^{-}$) for all double-framed soft bi-ideals $g_{B}=\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $h_{C}=\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ of S over U.
Definition 3.2. A double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is called a semiprime double-framed soft bi-ideal (briefly, SPDFS bi-ideal) of S over U, if $g_{B} \diamond g_{B} \sqsubseteq f_{A}$ implies $g_{B} \sqsubseteq f_{A}$. That is, $g_{B}^{+} \sim g_{B}^{+} \simeq f_{A}^{+}$and $g_{B}^{-} \sim g_{B}^{-} \supseteq f_{A}^{-}$imply $g_{B}^{+} \simeq f_{A}^{+}$and $g_{B}^{-} \supseteq f_{A}^{-}$for all double-framed soft bi-ideal $g_{B}=\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ of S over U.

Remark 3.3. Note that every prime DFS bi-ideal of an ordered semigroup S is a semiprime DFS bi-ideal of S over U. But the converse is not true in general.

Example 3.4. There are six women patients in the initial universe set U given by

$$
U:=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right\} .
$$

Let a set of parameters $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ be a set of status of each patient in U with the following type of disease:
e_{0} stands for the parameter "headache",
e_{1} stands for the parameter "Chest pain",
e_{2} stands for the parameter "mental depression",
e_{3} stands for the parameter "periodic pain",
with the following binary operation given in the Cayley table.

$*$	e_{0}	e_{1}	e_{2}	e_{3}
e_{0}	e_{0}	e_{0}	e_{0}	e_{0}
e_{1}	e_{0}	e_{0}	e_{0}	e_{0}
e_{2}	e_{0}	e_{0}	e_{1}	e_{0}
e_{3}	e_{0}	e_{0}	e_{1}	e_{1}

We define the order relation " \leq " on E as follows.

$$
\leq=\left\{\left(e_{0}, e_{0}\right),\left(e_{0}, e_{1}\right),\left(e_{0}, e_{2}\right),\left(e_{0}, e_{3}\right),\left(e_{2}, e_{3}\right),\left(e_{1}, e_{1}\right),\left(e_{2}, e_{2}\right),\left(e_{3}, e_{3}\right)\right\}
$$

We define the covering relation " \prec " as given below.

$$
\prec:=\left\{\left(e_{0}, e_{1}\right),\left(e_{0}, e_{2}\right),\left(e_{0}, e_{3}\right),\left(e_{2}, e_{3}\right)\right\} .
$$

Then $(E, *, \leq)$ is an ordered semigroup. Here $A=\left\{e_{0}\right\}, B=\left\{e_{0}, e_{1}\right\}, D=\left\{e_{0}, e_{1}, e_{2}\right\}$, $F=\left\{e_{0}, e_{1}, e_{3}\right\}$ and S are the bi-ideals of E. Consider a double-framed soft set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of E over U as follows:

$$
\begin{gathered}
f_{A}^{+}: A \longrightarrow P(U), x \longmapsto\left\{\begin{array}{cc}
\left\{p_{1}, p_{2}\right\} & \text { if } x=e_{0} \\
\{ \} & \text { if } x \in\left\{e_{1}, e_{2}, e_{3}\right\}
\end{array}\right. \\
f_{A}^{-}: A \longrightarrow P(U), x \longmapsto\left\{\begin{array}{cc}
\left\{p_{4}, p_{5}\right\} & \text { if } x=e_{0} \\
\left\{p_{3}, p_{4}, p_{5}\right\} & \text { if } x \in\left\{e_{1}, e_{2}, e_{3}\right\} .
\end{array}\right.
\end{gathered}
$$

Then it is easy to verify that $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is DFS bi-ideal of S over U. Now let $h_{D}=$ $\left\langle\left(h_{D}^{+}, h_{D}^{-}\right) ; D\right\rangle$ be a double-framed soft set over U defined as follows:

$$
\begin{gathered}
h_{D}^{+}: D \longrightarrow P(U), x \longmapsto\left\{\begin{array}{cc}
\left\{p_{1}, p_{2}, p_{3}\right\} & \text { if } x=e_{0} \\
\left\{p_{1}, p_{3}\right\} & \text { if } x=e_{1} \\
\left\{p_{1}\right\} & \text { if } x=e_{2} \\
\{ \} & \text { if } x=e_{3}
\end{array}\right. \\
h_{D}^{-}: D \longrightarrow P(U), x \longmapsto\left\{\begin{array}{cc}
\left\{p_{3}, p_{4}, p_{5}, p_{6}\right\} & \text { if } x=e_{0} \\
\left\{p_{5}, p_{6}\right\} & \text { if } x=e_{1} \\
\left\{p_{4}\right\} & \text { if } x=e_{2} \\
\left\{p_{4}, p_{5}, p_{6}\right\} & \text { if } x=e_{3} .
\end{array}\right.
\end{gathered}
$$

By an easy verification it can be seen that $h_{D}=\left\langle\left(h_{D}^{+}, h_{D}^{-}\right) ; D\right\rangle$ is a double-framed soft bi-ideal over U.

Consider a double-framed soft set $l_{F}=\left\langle\left(l_{F}^{+}, l_{F}^{-}\right) ; F\right\rangle$ over U, defined as follows:

$$
\begin{aligned}
& l_{F}^{+}: F \longrightarrow P(U), x \longmapsto\left\{\begin{array}{cc}
\left\{p_{1}, p_{2}, p_{3}\right\} & \text { if } x=e_{0} \\
\left\{p_{1}, p_{3}\right\} & \text { if } x=e_{1} \\
\{ \} & \text { if } x=e_{2} \\
\left\{p_{2}\right\} & \text { if } x=e_{3}
\end{array}\right. \\
& l_{F}^{-}: F \longrightarrow P(U), x \longmapsto\left\{\begin{array}{cc}
\left\{p_{2}, p_{3}, p_{5}\right\} & \text { if } x=e_{0} \\
\left\{p_{2}, p_{4}\right\} & \text { if } x=e_{1} \\
\left\{p_{6}\right\} & \text { if } x=e_{2} \\
\left\{p_{5}\right\} & \text { if } x=e_{3} .
\end{array}\right.
\end{aligned}
$$

The DFS bi-ideal $h_{D}=\left\langle\left(h_{D}^{+}, h_{D}^{-}\right) ; D\right\rangle$ of S over U is a prime DFS bi-ideal, which is also a semiprime DFS bi-ideal of S over U. The DFS bi-ideal $l_{F}=\left\langle\left(l_{F}^{+}, l_{F}^{-}\right) ; F\right\rangle$ of S over U is semiprime but not a prime DFS bi-ideal of S over U. Because

$$
f_{A}^{+} \tilde{\circ} h_{D}^{+} \subseteq l_{F}^{+} \text {implies that } f_{A}^{+} \tilde{\nsubseteq} l_{F}^{+} \text {and } h_{D}^{+} \tilde{\nsubseteq} l_{F}^{+},
$$

and

$$
f_{A}^{-} \tilde{*} h_{D}^{-} \supseteq l_{F}^{-} \text {implies that } f_{A}^{-} \supseteq l_{F}^{-} \text {and } h_{D}^{-} \supseteq l_{F}^{-} \text {. }
$$

Remark 3.5. Every strongly prime DFS bi-ideal of S over U is a prime DFS bi-ideal of S over U, but the converse is not true in general.

Example 3.6. Suppose that there are six houses in an initial universe set U, given by

$$
U:=\left\{h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}\right\} .
$$

Let a set of parameters $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ be a set of status of houses in which e_{0} stands for the parameter "beautiful", e_{1} stands for the parameter "cheap", e_{2} stands for the parameter "in good location", e_{3} stands for the parameter "in green surrounding", with the following binary operation given in the Cayley table.

$*$	e_{0}	e_{1}	e_{2}	e_{3}
e_{0}	e_{0}	e_{0}	e_{0}	e_{0}
e_{1}	e_{0}	e_{1}	e_{1}	e_{1}
e_{2}	e_{0}	e_{2}	e_{2}	e_{2}
e_{3}	e_{0}	e_{3}	e_{3}	e_{3}

We define the order relation " \leq " on E as follows.

$$
\leq=\left\{\left(e_{0}, e_{0}\right),\left(e_{1}, e_{1}\right),\left(e_{2}, e_{2}\right),\left(e_{0}, e_{2}\right),\left(e_{0}, e_{3}\right),\left(e_{2}, e_{3}\right),\left(e_{3}, e_{3}\right)\right\}
$$

We define the covering relation " \prec " as given below.

$$
\prec:=\left\{\left(e_{0}, e_{2}\right),\left(e_{0}, e_{3}\right),\left(e_{2}, e_{3}\right)\right\} .
$$

Then $(E, *, \leq)$ is an ordered semigroup. Every subset of S containing e_{0} is a bi-ideal of E. Let $A=\left\{e_{0}, e_{1}, e_{2}\right\}$. Let us define a DFS set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U as follows:
$f_{A}^{+}\left(e_{0}\right)=\left\{h_{1}, h_{2}, h_{3}, h_{5}, h_{6}\right\}, f_{A}^{+}\left(e_{1}\right)=\left\{h_{1}, h_{2}\right\}, f_{A}^{+}\left(e_{2}\right)=\left\{h_{2}, h_{3}\right\}, f_{A}^{+}\left(e_{3}\right)=\{ \}$,
$f_{A}^{-}\left(e_{0}\right)=\left\{h_{4}, h_{5}, h_{6}\right\}, f_{A}^{-}\left(e_{1}\right)=\left\{h_{3}, h_{4}\right\}, f_{A}^{-}\left(e_{2}\right)=\left\{h_{4}, h_{5}\right\}, f_{A}^{-}\left(e_{3}\right)=\left\{h_{1}, h_{3}, h_{5}\right\}$,

$$
\begin{gathered}
\left\{\begin{array}{c}
\left\{e_{0}, e_{1}\right\} \text { if } \gamma=\left\{h_{1}\right\} \\
\left\{e_{0}, e_{1}, e_{2}\right\} \text { if } \gamma=\left\{h_{2}\right\} \\
\left\{e_{0}, e_{2}\right\} \text { if } \gamma=\left\{h_{3}\right\} \\
\left\{e_{0}, e_{1}\right\} \text { if } \gamma=\left\{h_{1}, h_{2}\right\} \\
\left\{e_{0}\right\} \text { if } \gamma=\left\{h_{1}, h_{3}\right\} \\
\left\{e_{0}\right\} \text { if } \gamma=\left\{h_{2}, h_{3}\right\}
\end{array}\right. \\
\left.e_{A}\left(f_{A}^{+} ; \gamma\right) ; \gamma\right)=\left\{\begin{array}{c}
\left\{e_{0}, e_{1}\right\} \text { if } \delta=U \\
\left\{e_{0}, e_{1}, e_{2}\right\} \text { if } \delta=\left\{h_{3}, h_{4}, h_{5}, h_{6}\right\} \\
\left\{e_{0}, e_{2}\right\} \text { if } \delta=\left\{h_{4}, h_{5}, h_{6}\right\} \\
\left\{e_{0}, e_{1}\right\} \text { if } \delta=\left\{h_{3}, h_{4}, h_{5}, h_{6}\right\} \\
\left\{e_{0}\right\} \text { if } \delta=\left\{h_{1}, h_{3}, h_{4}, h_{5}, h_{6}\right\} \\
\left\{e_{0}\right\} \text { if } \delta=\left\{h_{2}, h_{3}, h_{4}, h_{5}, h_{6}\right\}
\end{array}\right.
\end{gathered}
$$

Then $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a DFS bi-ideal of S over U.
Let $B=\left\{e_{0}, e_{1}, e_{3}\right\}$ and define a DFS set $g_{B}=\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ of S over U, as follows:
$g_{B}^{+}\left(e_{0}\right)=\left\{h_{1}, h_{2}, h_{3}, h_{5}, h_{6}\right\}, g_{B}^{+}\left(e_{1}\right)=\left\{h_{2}, h_{4}, h_{6}\right\}, g_{B}^{+}\left(e_{2}\right)=\left\{h_{1}, h_{3}, h_{5}\right\}, g_{B}^{+}\left(e_{3}\right)=\left\{h_{1}, h_{2}, h_{3}, h_{4}\right\}$,
$g_{B}^{-}\left(e_{0}\right)=\left\{h_{1}, h_{2}\right\}, g_{B}^{-}\left(e_{1}\right)=\left\{h_{2}, h_{3}, h_{4}\right\}, g_{B}^{-}\left(e_{2}\right)=\left\{h_{6}\right\}, g_{B}^{-}\left(e_{3}\right)=\left\{h_{3}, h_{5}\right\}$,

$$
\begin{gathered}
i_{A}\left(g_{B}^{+} ; \gamma\right)=\left\{\begin{array}{c}
\left\{e_{0}\right\} \text { if } \gamma=\left\{h_{2}, h_{4}, h_{6}\right\} \\
\left\{e_{1}\right\} \text { if } \gamma=\left\{h_{6}\right\} \\
\left\{e_{0}, e_{1}\right\} \text { if } \gamma=\left\{h_{4}, h_{6}\right\} \\
\left\{e_{2}\right\} \text { if } \gamma=\left\{h_{4}\right\} \\
\left\{e_{3}\right\} \text { if } \gamma=\left\{h_{1}, h_{2}, h_{3}\right\}
\end{array}\right. \\
e_{A}\left(g_{B}^{-} ; \gamma\right)=\left\{\begin{array}{c}
\left\{e_{0}\right\} \text { if } \delta=\left\{h_{1}, h_{2}, h_{4}, h_{6}\right\} \\
\left\{e_{1}\right\} \text { if } \delta=\left\{h_{2}, h_{3}, h_{4}, h_{6}\right\} \\
\left\{e_{0}, e_{1}\right\} \text { if } \delta=U \\
\left\{e_{2}\right\} \text { if } \delta=\left\{h_{6}\right\} \\
\left\{e_{3}\right\} \text { if } \delta=\left\{h_{1}, h_{2}, h_{3}, h_{5}\right\}
\end{array}\right.
\end{gathered}
$$

Then it follows that $g_{B}=\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ is a DFS bi-ideal of S over U. Also $f_{A}^{+} \tilde{\circ}_{B}^{+}=f_{A}^{+}$and $f_{A}^{-} \tilde{*}_{B}^{-}=f_{A}^{-}$for all DFS bi-ideals $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{B}=\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ of S over U. Then, every DFS bi-ideal of S over U is prime.

Let $F=\left\{e_{0}, e_{1}\right\}$ and define a DFS set $l_{F}=\left\langle\left(l_{F}^{+}, l_{F}^{-}\right) ; F\right\rangle$ on F over U as follows:
$l_{F}^{+}\left(e_{0}\right)=\left\{h_{1}, h_{2}, h_{4}, h_{5}, h_{6}\right\}, l_{F}^{+}\left(e_{1}\right)=\left\{h_{2}, h_{4}, h_{6}\right\}, l_{F}^{+}\left(e_{2}\right)=\{ \}, l_{F}^{+}\left(e_{3}\right)=\{ \}$,
$l_{F}^{-}\left(e_{0}\right)=\left\{h_{1}, h_{2}\right\}, l_{F}^{-}\left(e_{1}\right)=\left\{h_{2}, h_{3}, h_{4}\right\}, l_{F}^{-}\left(e_{2}\right)=\left\{h_{6}\right\}, l_{F}^{-}\left(e_{3}\right)=\left\{h_{3}, h_{5}\right\}$,
Then $l_{F}=\left\langle\left(l_{F}^{+}, l_{F}^{-}\right) ; F\right\rangle$ is prime DFS bi-ideal but this is not a strongly prime DFS bi-ideal. Because

$$
\left(f_{A}^{+} \tilde{\circ} g_{B}^{+}\right) \tilde{\cap}\left(g_{B}^{+} \tilde{\circ} f_{A}^{+}\right) \widetilde{\subseteq} l_{F}^{+} \text {and }\left(f_{A}^{-} \tilde{*} g_{B}^{-}\right) \tilde{\cup}\left(g_{B}^{-} \tilde{*} f_{A}^{-}\right) \supseteq l_{F}^{-},
$$

but $f_{A}^{+} \varsubsetneqq l_{F}^{+}, g_{B}^{+} \nsubseteq l_{F}^{+}$and $f_{A}^{-} \supseteq l_{F}^{-}, g_{B}^{-} \supseteq l_{F}^{-}$.

Let A be a nonempty subset of S. Then the characteristic double-framed soft mapping of A, denoted by $\left\langle\left(X_{A}^{+}, X_{A}^{-}\right) ; A\right\rangle=X_{A}$ is defined to be a double-framed soft set, in which X_{A}^{+}and X_{A}^{-} are soft mappings over U, given as follows:

$$
\begin{aligned}
& X_{A}^{+}: S \longrightarrow P(U), x \longmapsto\left\{\begin{array}{rr}
U & \text { if } x \in A \\
\emptyset & \text { if } x \notin A,
\end{array}\right. \\
& X_{A}^{-}: S \longrightarrow P(U), x \longmapsto\left\{\begin{array}{rr}
\emptyset & \text { if } x \in A \\
U & \text { if } x \notin A .
\end{array}\right.
\end{aligned}
$$

Note that the characteristic mapping of the whole set S, denoted by $X_{S}=\left\langle\left(X_{S}^{+}, X_{S}^{-}\right) ; S\right\rangle$, is called the identity double-framed soft mapping, where $X_{S}^{+}(x)=U$ and $X_{S}^{-}(x)=\emptyset, \forall x \in S$.
Lemma 3.7. A DFS set $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U is a DFS semigroup of S over U if and only if $f_{A} \diamond f_{A} \sqsubseteq f_{A}$ i.e., $f_{A}^{+} \sim f_{A}^{+} \widetilde{\subseteq} f_{A}^{+}$and $f_{A}^{-} \tilde{*} f_{A}^{-} \supseteq f_{A}^{-}$.
Proof. Let $x, y \in S$. If $A_{x}=\emptyset$, then obviously $\left(f_{A}^{+} \sim f_{A}^{+}\right)(x)=\emptyset \tilde{\subseteq} f_{A}^{+}$and $\left(f_{A}^{-} \tilde{*} f_{A}^{-}\right)(x)=U \supseteq$ f_{A}^{-}. Assume that $A_{x} \neq \emptyset$, then $(y, z) \in A_{x}$ and so $x \leq y z$ for $x, y \in S$. Hence, we have

$$
\begin{aligned}
\left(f_{A}^{+} \sim f_{A}^{+}\right)(x) & =\bigcup_{(y, z) \in A_{x}}\left\{f_{A}^{+}(y) \cap g_{A}^{+}(z)\right\} \\
& \supseteq f_{A}^{+}(y) \cap g_{A}^{+}(z)
\end{aligned}
$$

and

$$
\begin{aligned}
\left(f_{A}^{-} \tilde{*} f_{A}^{-}\right)(x) & =\bigcap_{(y, z) \in A_{x}}\left\{f_{A}^{-}(y) \cup g_{A}^{-}(z)\right\} \\
& \subseteq f_{A}^{-}(y) \cup g_{A}^{-}(z) .
\end{aligned}
$$

Since $(y, z) \in A_{x}$, we have $x \leq y z$ and $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a DFS semigroup of S over U, we have $f_{A}^{+}(x) \supseteq f_{A}^{+}(y z) \supseteq f_{A}^{+}(y) \cap g_{A}^{+}(z)$ and $f_{A}^{-}(x) \subseteq f_{A}^{-}(y z) \subseteq f_{A}^{-}(y) \cup g_{A}^{-}(z)$.Thus,

$$
\left(f_{A}^{+} \sim f_{A}^{+}\right)(x)=\bigcup_{(y, z) \in A_{x}}\left\{f_{A}^{+}(y) \cap g_{A}^{+}(z)\right\} \subseteq \bigcup_{(y, z) \in A_{x}} f_{A}^{+}(x)=f_{A}^{+}(x),
$$

and

$$
\left(f_{A}^{-} \tilde{*} f_{A}^{-}\right)(x)=\bigcap_{(y, z) \in A_{x}}\left\{f_{A}^{-}(y) \cup g_{A}^{-}(z)\right\} \supseteq \bigcap_{(y, z) \in A_{x}} f_{A}^{-}(x)=f_{A}^{-}(x) .
$$

Therefore, $f_{A}^{+} \tilde{\circ} f_{A}^{+} \widetilde{\subseteq} f_{A}^{+}$and $f_{A}^{-} \tilde{*} f_{A}^{-} \supseteq f_{A}^{-}$, that is, $f_{A} \diamond f_{A} \sqsubseteq f_{A}$.
Conversely, let $x, y \in S$. Then

$$
\begin{aligned}
f_{A}^{+}(x y) & \supseteq\left(f_{A}^{+} \tilde{\circ} f_{A}^{+}\right)(x y)=\bigcup_{(y, z) \in A_{x y}}\left\{f_{A}^{+}(y) \cap g_{A}^{+}(z)\right\} \\
& \supseteq f_{A}^{+}(x) \cap g_{A}^{+}(y),
\end{aligned}
$$

and

$$
\begin{aligned}
f_{A}^{-}(x y) & \subseteq\left(f_{A}^{-} \tilde{*} f_{A}^{-}\right)(x y)=\bigcap_{(y, z) \in A_{x y}}\left\{f_{A}^{+}(y) \cup g_{A}^{+}(z)\right\} \\
& \subseteq f_{A}^{-}(x) \cup g_{A}^{-}(y) .
\end{aligned}
$$

Consequently, $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a DFS semigroup of S over U.

Lemma 3.8. (cf. [7]) For a nonempty subset A of S, the following assertions are equivalent:
(1) A is a left (right or bi-ideal) of S.
(2) The double-framed soft set $\left\langle\left(X_{A}^{+}, X_{A}^{-}\right) ; A\right\rangle$ of S over U is a double-framed soft l-ideal (resp., double-framed soft r - or bi-ideal) of S over U.

Lemma 3.9. Let $f_{A_{i}}=\left\{\left\langle\left(f_{A_{i}}^{+}, f_{A_{i}}^{-}\right) ; A_{i}\right\rangle / i \in I\right\}$ be a family of double-framed soft bi-ideals of S over U. Then $\bigcap_{i \in I} f_{A_{i}}=\left\langle\left(\bigcap_{i \in I} f_{A_{i}}^{+}, \bigcup_{i \in I}^{\sim} f_{A_{i}}^{-}\right) ; A_{i}\right\rangle$ is a semiprime double-framed soft bi-ideal of S over U.

Proof. Since the intersection of DFS bi-ideals is again a DFS bi-ideal of S over U. Hence $\bigcap_{i \in I} f_{A_{i}}=$ $\left\langle\left(\bigcap_{i \in I} f_{A_{i}}^{+}, \bigcup_{i \in I}^{\sim} f_{A_{i}}^{-}\right) ; A_{i}\right\rangle$ is DFS bi-ideal of S over U. Let $\left\langle\left(h_{D}^{+}, h_{D}^{-}\right) ; D\right\rangle$ be a DFS bi-ideal of S such that $h_{D} \diamond h_{D} \sqsubseteq \bigcap_{i \in I} f_{A_{i}}$ i.e., $h_{D}^{+} \stackrel{\sim}{\circ} h_{D}^{+} \simeq \bigcap_{i \in I} f_{A_{i}}^{+}$and $h_{D}^{-} \tilde{*}^{\sim} h_{D} \supseteq \bigcup_{i \in I}^{\sim} f_{A_{i}}^{-}$for $i \in I$. Then $h_{D}^{+} \sim h_{D}^{+} \simeq f_{A_{i}}^{+}$ and $h_{D}^{-} \sim h_{D}^{-} \supseteq f_{A_{i}}^{-}$for all $i \in I$ Since each $\left\langle\left(f_{A_{i}}^{+}, f_{A_{i}}^{-}\right) ; A_{i}\right\rangle$ is prime DFS bi-ideal of S over U. Hence $h_{D}^{+} \stackrel{\sim}{\subseteq} f_{A_{i}}^{+}$and $h_{D}^{-} \supseteq f_{A_{i}}^{-}$for all $i \in I$. Thus, $\bigcap_{i \in I} f_{A_{i}}$ is a semiprime DFS bi-ideal of S over U.

Lemma 3.10. If $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{B}=\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ DFS bi-ideal of S over U. Then $f_{A} \diamond g_{B}$ is a DFS bi-ideal of S over U.

Definition 3.11. A DFS bi-ideal $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of an ordered semigroup S over U is called an irreducible (resp., strongly irreducible) DFS bi-ideal if for any double-framed soft bi-ideals $g_{B}=\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $h_{C}=\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ of S over $U, g_{B} \sqcap h_{C}=f_{A} \quad\left(\right.$ resp., $\left.g_{B} \sqcap h_{C} \sqsubseteq f_{A}\right)$ implies either $g_{B}=f_{A}$ or $h_{C}=f_{A}$ (resp., $g_{B} \sqsubseteq f_{A}$ or $h_{C} \sqsubseteq f_{A}$). That is, $g_{B}^{+} \tilde{\cap} h_{C}^{+} \cong f_{A}^{+}$and $g_{B}^{-} \tilde{\cup} h_{C}^{-} \cong f_{A}^{-}$(resp., $g_{B}^{+} \tilde{\cap} h_{C}^{+} \cong f_{A}^{+}$and $g_{B}^{-} \tilde{\cup} h_{C}^{-} \supseteq f_{A}^{-}$) imply either $g_{B}^{+} \cong f_{A}^{+}$or $h_{C}^{+} \cong f_{A}^{+}$, and $g_{B}^{-} \cong f_{A}^{-}, h_{C}^{-} \cong f_{A}^{-}$(resp., $g_{B}^{+} \simeq f_{A}^{+}$or $h_{C}^{+} \simeq f_{A}^{+}$, and $g_{B}^{-} \supseteq f_{A}^{-}, h_{C}^{-} \simeq f_{A}^{-}$).

Remark 3.12. Every strongly irreducible DFS bi-ideal of S over U is an irre-ducible DFS bi-ideal but the converse is not true in general.

Example 3.13. Suppose that there are five houses in an initial universe set U, given by

$$
U:=\left\{h_{1}, h_{2}, h_{3}, h_{4}, h_{5}\right\} .
$$

Let a set of parameters $E=\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ be a set of status of houses in which e_{0} stands for the parameter "beautiful", e_{1} stands for the parameter "cheap",
e_{2} stands for the parameter "in good location", e_{3} stands for the parameter "in green surrounding", e_{4} stands for the parameter "with double exit", e_{5} stands for the parameter "in city area",

$*$	e_{0}	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}
e_{0}						
e_{1}	e_{0}	e_{1}	e_{1}	e_{1}	e_{1}	e_{1}
e_{2}	e_{0}	e_{1}	e_{2}	e_{3}	e_{1}	e_{1}
e_{3}	e_{0}	e_{1}	e_{1}	e_{1}	e_{2}	e_{3}
e_{4}	e_{0}	e_{1}	e_{4}	e_{5}	e_{1}	e_{1}
e_{5}	e_{0}	e_{1}	e_{1}	e_{1}	e_{4}	e_{5}

We define the order relation $" \leq "$ on E as follows.

$$
\leq=\left\{\left(e_{0}, e_{0}\right),\left(e_{1}, e_{1}\right),\left(e_{2}, e_{2}\right),\left(e_{3}, e_{3}\right),\left(e_{4}, e_{4}\right),\left(e_{5}, e_{5}\right),\left(e_{0}, e_{1}\right),\left(e_{0}, e_{2}\right),\left(e_{0}, e_{3}\right),\left(e_{0}, e_{4}\right),\left(e_{2}, e_{3}\right)\right\}
$$

We define the covering relation " \prec " as given below.

$$
\prec:=\left\{\left(e_{0}, e_{1}\right),\left(e_{0}, e_{2}\right),\left(e_{0}, e_{3}\right),\left(e_{0}, e_{4}\right),\left(e_{2}, e_{3}\right)\right\} .
$$

Then $(E, *, \leq)$ is an ordered semigroup. The sets

$$
\begin{aligned}
& \left\{e_{0}\right\},\left\{e_{0}, e_{1}, e_{2}\right\},\left\{e_{0}, e_{1}, e_{3}\right\},\left\{e_{0}, e_{1}, e_{4}\right\},\left\{e_{0}, e_{1}, e_{5}\right\},\left\{e_{0}, e_{1}, e_{2}, e_{4}\right\} \\
& \left\{e_{0}, e_{1}, e_{3}, e_{5}\right\},\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}, E
\end{aligned}
$$

are bi-ideals of E . The bi-ideals

$$
\left\{e_{0}, e_{1}, e_{2}, e_{4}\right\},\left\{e_{0}, e_{1}, e_{3}, e_{5}\right\},\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}
$$

are irreducible but not strongly irreducible. The only strongly irreducible bi-ideals of E are $\left\{e_{0}\right\}$ and E. By Lemma 3.8, the characteristic double-framed soft set of the irreducible bi-ideals

$$
\left\{e_{0}, e_{1}, e_{2}, e_{4}\right\},\left\{e_{0}, e_{1}, e_{3}, e_{5}\right\},\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}
$$

are irreducible double-framed soft bi-ideal but not strongly irreducible double-framed soft bi-ideal of S over U.

Lemma 3.14. Every strongly irreducible semiprime $D F S$ bi-ideal of S over U is a strongly prime DFS bi-ideal of S over U.

Proof. Suppose that $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be a strongly irreducible semiprime DFS bi-ideal of S over U. Let $g_{B}=\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $h_{C}=\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ be DFS bi-ideals of S over U such that

$$
\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right) \simeq f_{A}^{+} \text {and }\left(g_{B}^{-} \sim h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \approx g_{B}^{-}\right) \supseteq f_{A}^{-}
$$

Since $g_{B}^{+} \tilde{\cap} h_{C}^{+}$and $g_{B}^{-} \tilde{\cup} h_{C}^{-}$are soft bi-ideals of S over U and

$$
\begin{aligned}
& \left(g_{B}^{+} \stackrel{\sim}{\circ} h_{C}^{+}\right) \sim\left(h_{C}^{+} \sim g_{B}^{+}\right) \simeq\left(g_{B}^{+} \sim h_{C}^{+}\right), \\
& \left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right) \simeq\left(h_{C}^{+} \sim g_{B}^{+}\right), \\
& \left(g_{B}^{-} \approx h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \supseteq\left(g_{B}^{-} \approx h_{C}^{-}\right), \\
& \left(g_{B}^{-} \sim h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \approx g_{B}^{-}\right) \supseteq\left(h_{C}^{-} \approx g_{B}^{-}\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left(g_{B}^{+} \tilde{\cap} h_{C}^{+}\right) \sim\left(h_{C}^{+} \tilde{\cap} g_{B}^{+}\right) \simeq\left(g_{B}^{+} \tilde{\circ} h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \tilde{\circ} g_{B}^{+}\right) \tilde{\subseteq} f_{A}^{+} . \\
& \left(g_{B}^{-} \tilde{\cup} h_{C}^{-}\right) \tilde{*}\left(h_{C}^{-} \tilde{\cup} g_{B}^{-}\right) \supseteq\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \cong f_{A}^{-} .
\end{aligned}
$$

Since $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is semiprime, we have $\left(g_{B}^{+} \tilde{\cap} h_{C}^{+}\right) \widetilde{\simeq} f_{A}^{+}$and $\left(g_{B}^{-} \tilde{\cup} h_{C}^{-}\right) \cong f_{A}^{-}$. Since $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is strongly irreducible DFS bi-ideal of S over U, we have either $g_{B}^{+} \widetilde{\subseteq} f_{A}^{+}$or $h_{C}^{+} \widetilde{\subseteq} f_{A}^{+}$ and $g_{B}^{-} \supseteq f_{A}^{-}, h_{C}^{-} \supseteq f_{A}^{-}$.Thus, $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is strongly prime DFS bi-ideal of S over U.

Lemma 3.15. (Khan et al. [2]) Let S be an ordered semigroup and $A ; B$ are non-empty subsets of S, then the following are equivalent:
(i) $A \subseteq B$ if and only if $X_{A} \subseteq X_{B}$,
(ii) $X_{A} \sqcap X_{B}=X_{(A \cap B)}$,
(iii) $X_{A} \sqcup X_{B}=X_{(A \cup B)}$,
(iv) $X_{A} \diamond X_{B}=X_{(A B]}$.

Lemma 3.16. Let $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be a DFS bi-ideal of S over U with $f_{A}^{+}(a)=\gamma$ and $f_{A}^{-}(a)=\delta$, where a is an element of S and $\gamma, \delta \in P(U)$. Then there exists an irreducible DFS bi-ideal $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ of S over U such that $g_{A}^{+}(a)=\gamma$ and $g_{A}^{-}(a)=\delta$.
Proof. Let $X:=\left\{\begin{array}{c}h_{C}=\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle: \text { such that } h_{C}=\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle \\ \text { be a DFS ideal of } S \text { over } U, \\ h_{A}^{+}(a)=\gamma \text { and } h_{A}^{-}(a)=\delta \text { and } f_{A}^{+} \widetilde{\subseteq} h_{C}^{+}, f_{A}^{-} \supseteq h_{C}^{-}\end{array}\right\}$
Then $X \neq \emptyset$, since $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle \in X$. The collection X is partially ordered set by set inclusion \sqsubseteq. Suppose that Y is a totally ordered subset of X, say $Y:=\left\{\left\langle\left(h_{C_{i}}^{+}, h_{C_{i}}^{-}\right) ; C_{i}\right\rangle: i \in I\right\}$. : Let $x, y \in S$ be such that $x \leq y$. Then,

$$
\begin{aligned}
& \left(\bigcup_{i \in I} h_{C_{i}}^{+}\right)(x)=\bigcup_{i \in I}\left(h_{C_{i}}^{+}(x)\right) \supseteq \bigcup_{i \in I}\left(h_{C_{i}}^{+}(y)\right), \\
& \left(\bigcap_{i \in I} h_{C_{i}}^{-}\right)(x)=\bigcap_{i \in I}\left(h_{C_{i}}^{-}(x)\right) \subseteq \bigcap_{i \in I}\left(h_{C_{i}}^{-}(y)\right) .
\end{aligned}
$$

Let x, y be any elements of S, then

$$
\begin{aligned}
\left(\bigcup_{i \in I} h_{C_{i}}^{+}\right)(x y) & =\bigcup_{i \in I}\left(h_{C_{i}}^{+}(x y)\right) \supseteq \bigcup_{i \in I}\left(h_{C_{i}}^{+}(x) \cap h_{C_{i}}^{+}(y)\right) \\
& =\left(\bigcup_{i \in I}\left(h_{C_{i}}^{+}(x)\right)\right) \cap\left(\bigcup_{i \in I}\left(h_{C_{i}}^{+}(y)\right)\right) \\
& =\left(\bigcup_{i \in I} h_{C_{i}}^{+}\right)(x) \cap\left(\bigcup_{i \in I} h_{C_{i}}^{+}\right)(y),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\bigcap_{i \in I} h_{C_{i}}^{-}\right)(x y) & =\bigcap_{i \in I}\left(h_{C_{i}}^{-}(x y)\right) \subseteq \bigcap_{i \in I}\left(h_{C_{i}}^{-}(x) \cup h_{C_{i}}^{-}(y)\right) \\
& =\left(\bigcap_{i \in I}\left(h_{C_{i}}^{+}(x)\right)\right) \cup\left(\bigcap_{i \in I}\left(h_{C_{i}}^{+}(y)\right)\right) \\
& =\left(\bigcap_{i \in I} h_{C_{i}}^{-}\right)(x) \cup\left(\bigcap_{i \in I} h_{C_{i}}^{-}\right)(y) .
\end{aligned}
$$

For any $x, y, z \in S$,

$$
\begin{aligned}
\left(\bigcup_{i \in I} h_{C_{i}}^{+}\right)(x y z) & =\bigcup_{i \in I}\left(h_{C_{i}}^{+}(x y z)\right) \supseteq \bigcup_{i \in I}\left(h_{C_{i}}^{+}(x) \cap h_{C_{i}}^{+}(z)\right) \\
& =\left(\bigcup_{i \in I}\left(h_{C_{i}}^{+}(x)\right)\right) \cap\left(\bigcup_{i \in I}\left(h_{C_{i}}^{+}(z)\right)\right) \\
& =\left(\bigcup_{i \in I} h_{C_{i}}^{+}\right)(x) \cap\left(\bigcup_{i \in I} h_{C_{i}}^{+}\right)(z),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\bigcap_{i \in I} h_{C_{i}}^{-}\right)(x y z) & =\bigcap_{i \in I}\left(h_{C_{i}}^{-}(x y z)\right) \subseteq \bigcap_{i \in I}\left(h_{C_{i}}^{-}(x) \cup h_{C_{i}}^{-}(z)\right. \\
& =\left(\bigcap_{i \in I}\left(h_{C_{i}}^{+}(x)\right)\right) \cup\left(\bigcap_{i \in I}\left(h_{C_{i}}^{+}(z)\right)\right) \\
& =\left(\bigcap_{i \in I} h_{C_{i}}^{-}\right)(x) \cup\left(\bigcap_{i \in I} h_{C_{i}}^{-}\right)(z) .
\end{aligned}
$$

Therefore $\left\{\left\langle\left(\bigcup_{i \in I} h_{C_{i}}^{+}, \bigcap_{i \in I} h_{C_{i}}^{-}\right) ; C_{i}\right\rangle: i \in I\right\}$ is a DFS ideal of S over U. Since $f_{A}^{+} \tilde{\subseteq}^{h_{C_{i}}^{+}}$and $f_{A}^{-} \supseteq h_{C_{i}}^{-}$for each $i \in I$. So $f_{A}^{+} \simeq \bigcup_{i \in I} h_{C_{i}}^{+}$and $f_{A}^{-} \supseteq \bigcap_{i \in I} h_{C_{i}}^{-}$. Also $\left(\bigcup_{i \in I} h_{C_{i}}^{+}\right)(a)=\bigcup_{i \in I}\left(h_{C_{i}}^{-}(a)\right)=\gamma$ and $\left(\bigcap_{i \in I} h_{C_{i}}^{-}\right)(a)=\bigcap_{i \in I}\left(h_{C_{i}}^{-}(a)\right)=\delta$. Thus, $\left\langle\left(\bigcup_{i \in I} h_{C_{i}}^{+}, \bigcap_{i \in I} h_{C_{i}}^{-}\right) ; C_{i}\right\rangle$ is the least upper bound of Y, by Zorn's Lemma, there exists a DFS ideal $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ of S over U which is maximal with respect to the property $f_{A}^{+} \simeq g_{B}^{+}, f_{A}^{-} \cong g_{B}^{-}$and $g_{B}^{+}(a)=\gamma, g_{B}^{-}(a)=\delta$. Now we show that $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ is irreducible DFS bi-ideal of S over U. Suppose that $g_{B}^{+} \cong l_{F}^{+} \tilde{\cap} t_{D}^{+}$and $g_{B}^{-} \cong l_{F}^{-} \tilde{\cup} t_{D}^{-}$, where $\left\langle\left(l_{F}^{+}, l_{F}^{-}\right) ; F\right\rangle$ and $g_{D}=\left\langle\left(g_{D}^{+}, g_{D}^{-}\right) ; D\right\rangle$ are DFS bi-ideals of S over U. Then $g_{B}^{+} \subseteq l_{F}^{+}$or $g_{B}^{+} \simeq g_{D}^{+}$and $g_{B}^{-} \simeq l_{F}^{-}, g_{B}^{-} \cong g_{D}^{-}$. We claim that $g_{B}^{+} \cong l_{F}^{+}$or $g_{B}^{+} \cong g_{D}^{+}$and $g_{B}^{-} \cong l_{F}^{-}, g_{B}^{-} \cong g_{D}^{-}$. Suppose on contrary that $g_{B}^{+} \tilde{\neq} l_{F}^{+}$or $g_{B}^{+} \tilde{\neq t_{D}^{+}}$and $g_{B}^{-} \widetilde{\neq l_{F}^{-}}, g_{B}^{-} \tilde{\neq t_{D}^{-}}$. Since $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ is maximal with respect to the property that $g_{B}^{+}(a)=\underset{\sim}{\sim} \underset{\sim}{\gamma}, g_{B}^{+}(a)=\delta$. Since $g_{B}^{+} \underset{\sim}{\neq} l_{F}^{+}, g_{B}^{+} \underset{\neq}{\sim} g_{D}^{+}$ and $g_{B}^{-} \tilde{\neq} l_{F}^{-}, g_{B}^{-} \tilde{\neq} g_{D}^{-}$, it follows that $l_{F}^{+}(a) \not \approx \gamma \not \approx g_{D}^{+}(a)$ and $l_{F}^{-}(a) \underset{\neq \delta \not \approx g_{D}^{-}(a) \text {. Hence }}{ }$
$\gamma=g_{B}^{+}(\gamma) \cong l_{F}^{+}(a) \tilde{\cap} g_{D}^{+}(a)=\left(l_{F}^{+} \tilde{\cap} g_{D}^{+}\right)(a) \neq \gamma$ and $\delta=g_{B}^{-}(a) \cong l_{F}^{-}(a) \tilde{\cup} g_{D}^{-}(a)=\left(l_{F}^{-} \tilde{\cup} g_{D}^{-}\right)(a)$ $\neq \delta$, which is a contradiction. Hence either $g_{B}^{+} \cong l_{F}^{+}$or $g_{B}^{+} \cong g_{D}^{+}$and $g_{B}^{-} \cong l_{F}^{-}, g_{B}^{-} \cong g_{D}^{-}$. Therefore, $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ is an irreducible DFS bi-ideal of S over U.
Theorem 3.17. For an ordered semigroup $(S, ., \leq)$, the following assertions are equivalent:
(i) S is both regular and intra-regular,
(ii) $\left(f_{A}^{+} \tilde{\circ} f_{A}^{+}\right) \cong f_{A}^{+}$and $\left(f_{A}^{-} \tilde{*} f_{A}^{-}\right) \cong f_{A}^{-}$, for every DFS bi-ideal $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U.
(iii) $g_{B}^{+} \tilde{\cap} h_{C}^{+} \cong\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right), g_{B}^{-} \tilde{\cup} h_{C}^{-} \cong\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cap}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right)$, for every DFS bi-ideals $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ of S over U,
(iv) Each DFS bi-ideal of S over U is semiprime,
(v) Each proper DFS bi-ideal of S over U is the intersection of all irreducible semiprime DFS bi-ideals of S over U which contain it.

Proof. (i) \Rightarrow (ii). Suppose S is both regular and intra-regular ordered semigroup and $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ a DFS bi-ideal of S over U. Then for each $a \in S$, we have $\left(f_{A}^{+} \sim f_{A}^{+}\right)(a) \supseteq f_{A}^{+}(a)$ and $\left(f_{A}^{-} \tilde{*} f_{A}^{-}\right)(a) \cong f_{A}^{-}(a)$. Indeed: Since S is regular and intra-regular therefore there exist $x, y, z \in$ S, such that $a \leq a x a$ and $a \leq y a^{2} z$. Thus

$$
a \leq a x a \leq a x a x a \leq a x\left(y a^{2} z\right) x a=(a x y a)(a z x a) .
$$

Then $(a x y a, a z x a) \in A_{a}$. Since $A_{a} \neq \emptyset$, we have

$$
\begin{aligned}
\left(f_{A}^{+} \tilde{\circ} f_{A}^{+}\right)(a) & =\bigcup_{(y, z) \in A_{a}}\left\{f_{A}^{+}(y) \cap g_{A}^{+}(z)\right\} \\
& \supseteq f_{A}^{+}(\text {axya }) \cap g_{A}^{+}(a z x a) \\
\left(f_{A}^{-} \tilde{*} f_{A}^{-}\right)(a) & =\bigcap_{(y, z) \in A_{a}}\left\{f_{A}^{-}(y) \cup g_{A}^{-}(z)\right\} \\
& \subseteq f_{A}^{-}(\text {axya }) \cup g_{A}^{-}(a z x a)
\end{aligned}
$$

Since $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a DFS bi-ideal of S over U, we have

$$
\begin{aligned}
f_{A}^{+}(a x y a) & \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(a)=f_{A}^{+}(a), \\
f_{A}^{+}(a z x a) & \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(a)=f_{A}^{+}(a), \\
& \\
f_{A}^{-}(a x y a) & \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(a)=f_{A}^{-}(a), \\
f_{A}^{-}(a z x a) & \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(a)=f_{A}^{-}(a) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left(f_{A}^{+} \cap f_{A}^{+}\right)(a) & \supseteq f_{A}^{+}(a x y a) \cap f_{A}^{+}(a z x a) \\
& \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(a)=f_{A}^{+}(a) \\
\left(f_{A}^{-} \cap f_{A}^{-}\right)(a) & \subseteq f_{A}^{-}(a x y a) \cup f_{A}^{-}(a z x a) \\
& \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(a)=f_{A}^{-}(a),
\end{aligned}
$$

and so $f_{A}^{+} \tilde{\circ} f_{A}^{+} \underset{\sim}{\supseteq} f_{A}^{+}$and $f_{A}^{-} \tilde{*} f_{A}^{-} \cong f_{A}^{-}$. For the reverse inclusion, if $A_{x}=\emptyset$, then $\left(f_{A}^{+} \sim f_{A}^{+}\right)(x)=\emptyset \subseteq f_{A}^{+}(x)$ and $\left(f_{A}^{-} \tilde{*} f_{A}^{-}\right)(x)=U \supseteq f_{A}^{-}(x)$. If $A_{x} \neq \emptyset$,

$$
\begin{aligned}
& \left(f_{A}^{+} \tilde{\circ} f_{A}^{+}\right)(x)=\bigcup_{(y, z) \in A_{x}}\left\{f_{A}^{+}(y) \cap g_{A}^{+}(z)\right\} \\
& \left(f_{A}^{-} \tilde{*} f_{A}^{-}\right)(x)=\bigcap_{(y, z) \in A_{x}}\left\{f_{A}^{-}(y) \cup g_{A}^{-}(z)\right\}
\end{aligned}
$$

Since $x \leq y z$ and $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a DFS bi-ideal of S over U, we have $f_{A}^{+}(x) \supseteq f_{A}^{+}(y z) \supseteq$ $f_{A}^{+}(y) \cap f_{A}^{+}(z)$ and $f_{A}^{-}(x) \subseteq f_{A}^{-}(y z) \subseteq f_{A}^{-}(y) \cup f_{A}^{-}(z)$. Hence

$$
\begin{aligned}
\left(f_{A}^{+} \tilde{\circ} f_{A}^{+}\right)(x) & =\bigcup_{(y, z) \in A_{x}}\left\{f_{A}^{+}(y) \cap g_{A}^{+}(z)\right\} \subseteq \bigcup_{(y, z) \in A_{x}} f_{A}^{+}(y z) \\
& \subseteq \bigcup_{(y, z) \in A_{x}} f_{A}^{+}(x)=f_{A}^{+}(x), \\
\left(f_{A}^{-} \tilde{*} f_{A}^{-}\right)(x) & =\bigcap_{(y, z) \in A_{x}}\left\{f_{A}^{-}(y) \cup g_{A}^{-}(z)\right\} \supseteq \bigcap_{(y, z) \in A_{x}} f_{A}^{-}(y z) \\
& \subseteq \bigcap_{(y, z) \in A_{x}} f_{A}^{-}(x)=f_{A}^{-}(x) .
\end{aligned}
$$

Hence, we have $f_{A}^{+} \tilde{\circ} f_{A}^{+} \tilde{\subseteq} f_{A}^{+}$and $f_{A}^{-} \tilde{*} f_{A}^{-} \cong f_{A}^{-}$. Therefore, $f_{A}^{+} \tilde{\circ} f_{A}^{+} \cong f_{A}^{+}$and $f_{A}^{-} \tilde{*} f_{A}^{-} \cong f_{A}^{-}$. (ii) $\Rightarrow(i i i)$. Let $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ be DFS bi-ideals of S over U. Then $g_{B} \sqcap h_{C}$ is a DFS bi-ideal of S over U. By (ii), we have

$$
\begin{aligned}
& \left(g_{B}^{+} \tilde{\cap} h_{C}^{+}\right) \sim\left(g_{B}^{+} \tilde{\cap} h_{C}^{+}\right) \simeq g_{B}^{+} \tilde{\circ} h_{C}^{+}, \\
& \left(g_{B}^{-} \tilde{\cup} h_{C}^{-}\right) \tilde{*}\left(g_{B}^{-} \tilde{\cup} h_{C}^{-}\right) \cong g_{B}^{-} \tilde{*} h_{C}^{-} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left(g_{B}^{+} \tilde{\cap} h_{C}^{+}\right) \tilde{\circ}\left(g_{B}^{+} \tilde{\cap} h_{C}^{+}\right) \simeq h_{C}^{+} \sim g_{B}^{+}, \\
& \left(g_{B}^{-} \tilde{\cup} h_{C}^{-}\right) \approx\left(g_{B}^{-} \tilde{\cup} h_{C}^{-}\right) \cong h_{C}^{-} \tilde{*} g_{B}^{-} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \left(g_{B}^{+} \tilde{\cap} h_{C}^{+}\right) \tilde{\circ}\left(g_{B}^{+} \tilde{\cap} h_{C}^{+}\right) \tilde{\subseteq}\left(h_{C}^{+} \tilde{\circ} g_{B}^{+}\right) \tilde{\cap}\left(g_{B}^{+} \tilde{\circ} h_{C}^{+}\right), \\
& \left(g_{B}^{-} \tilde{\cup} h_{C}^{-}\right) \tilde{*}\left(g_{B}^{-} \tilde{\cup} h_{C}^{-}\right) \cong\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \tilde{\cup}\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) .
\end{aligned}
$$

For the reverse inclusion, since $g_{B}^{+} \tilde{\circ} h_{C}^{+}, g_{B}^{-} \tilde{*} h_{C}^{-}, h_{C}^{+} \sim g_{B}^{+}, h_{C}^{-} \tilde{*} g_{B}^{-}$are soft bi-ideals of S over U (Lemma 3.10) and so $\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right)$and $\left(g_{B}^{-} * h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right)$(Lemma 3.9). By (ii), we have

$$
\begin{aligned}
& \left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right) \cong\left(\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right)\right) \sim\left(\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right)\right) \\
& \widetilde{\subseteq}\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right) \cong g_{B}^{+} \tilde{\circ}\left(h_{C}^{+} \sim h_{C}^{+}\right) \sim g_{B}^{+} \\
& \cong g_{B}^{+} \sim h_{C}^{+} \sim g_{B}^{+}\left(\text {since } h_{C}^{+} \sim h_{C}^{+} \cong h_{C}^{+} \text {by (ii) }\right) \\
& \widetilde{\subseteq} g_{B}^{+} \sim X_{S}^{+} \sim g_{B}^{+} \simeq g_{B}^{+},
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \cong\left(\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right)\right) \tilde{*}\left(\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right)\right) \\
& \cong\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \cong g_{B}^{-} \tilde{*}\left(h_{C}^{-} \tilde{*} h_{C}^{-}\right) \approx g_{B}^{-} \\
& \cong g_{B}^{-} \tilde{*} h_{C}^{-} \tilde{*} g_{B}^{-}\left(\text {since } h_{C}^{-} \tilde{*} h_{C}^{-} \cong h_{C}^{-} \text {by (ii) }\right) \\
& \cong g_{B}^{-} \tilde{*} X_{S}^{-} \tilde{*} g_{B}^{-} \tilde{\supseteq} g_{B}^{-} .
\end{aligned}
$$

-Similarly, we can prove that $\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right) \simeq h_{C}^{+},\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \cong h_{C}^{-}$. Thus, $\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \tilde{\circ} g_{B}^{+}\right) \simeq g_{B}^{+} \tilde{\cap} h_{C}^{+}$and $\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \supseteq g_{B}^{-} \tilde{\cup} h_{C}^{-}$.

Therefore, $\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right) \cong g_{B}^{+} \tilde{\cap} h_{C}^{+}$and $\left(g_{B}^{-} \tilde{*}_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \cong g_{B}^{-} \tilde{\cup} h_{C}^{-}$.
(iii) $\Rightarrow(i)$. Let $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ be DFS left and right ideals of S over U, respectively. Then, $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ are DFS bi-ideals of S over U. By hypothesis,

$$
\left(g_{B}^{+} \tilde{\circ} h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \tilde{\circ} g_{B}^{+}\right) \cong g_{B}^{+} \tilde{\cap} h_{C}^{+} \text {and }\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \cong g_{B}^{-} \tilde{\cup} h_{C}^{-} \text {. }
$$

To prove that S is both regular and intra-regular, by Lemma 3.15, it is enough to prove that $R \cap L=(R L] \cap(L R]$ for every right ideal R and left ideal L of S.

Let R be a right and L a left ideal of S. Then, the characteristic mappings $\left\langle\left(X_{R}^{+}, X_{R}^{-}\right) ; R\right\rangle$ and $\left\langle\left(X_{L}^{+}, X_{L}^{-}\right) ; L\right\rangle$ are DFS left and right ideals of S over U,
respectively. By hypothesis,

$$
\begin{aligned}
X_{R \cap L}^{+} & =X_{R}^{+} \tilde{\cap} X_{L}^{+}=\left(X_{R}^{+} \tilde{\circ} X_{L}^{+}\right) \tilde{\cap}\left(X_{R}^{+} \tilde{\circ} X_{L}^{+}\right) \\
& =X_{(R L]}^{+} \tilde{\cap} X_{(R L]}^{+}=X_{(R L] \cap(R L]}^{+} . \\
X_{R \cup L}^{-} & =X_{R}^{-} \tilde{\cup} X_{L}^{-}=\left(X_{R}^{-} \tilde{*} X_{L}^{-}\right) \tilde{\cup}\left(X_{R}^{-} \tilde{*} X_{L}^{-}\right) \\
& =X_{(R L]}^{-} \tilde{\cup} X_{(R L]}^{-}=X_{(R L] \cup(R L]}^{-} .
\end{aligned}
$$

By Lemma 3.15, part (iv), we have $R \cap L=(R L] \cap(L R]$, and S is both regular and intra-regular (Lemma 3.15).
(iii) $\Rightarrow($ iv $)$. Let $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ be DFS left and right ideals of S over U, respectively, such that $f_{A}^{+} \tilde{\circ} f_{A}^{+} \simeq g_{B}^{+}$and $f_{A}^{-} \tilde{*} f_{A}^{-} \cong g_{B}^{-}$. By hypothesis, $f_{A}^{+} \cong f_{A}^{+} \tilde{\cap} f_{A}^{+} \cong$ $f_{A}^{+} \tilde{\circ} f_{A}^{+} \tilde{\cap} f_{A}^{+} \tilde{\circ} f_{A}^{+} \cong f_{A}^{+} \tilde{\circ} f_{A}^{+}$and $f_{A}^{-} \cong f_{A}^{-} \tilde{\cup} f_{A}^{-} \cong f_{A}^{-} \tilde{*} f_{A}^{-} \tilde{\cup} f_{A}^{-} \tilde{*} f_{A}^{-} \cong f_{A}^{-} \tilde{*} f_{A}^{-}$. Thus, $f_{A}^{+} \simeq g_{B}^{+}$ and $f_{A}^{-} \supseteq g_{B}^{-}$and $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ is semiprime. Since $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ is arbitrary, hence every DFS bi-ideal of S over U is semiprime.
$(i v) \Rightarrow(v)$. Let $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be a proper DFS bi-ideal of S over U and $\left\{\left\langle\left(f_{A_{i}}^{+}, f_{A_{i}}^{-}\right) ; A_{i}\right\rangle / i \in I\right\}$ be a collection of irreducible DFS bi-ideal of S over U, which contain $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$. By Lemma 3.16, this collection is non-empty. Hence, so $f_{A}^{+} \simeq \widetilde{\subseteq} \bigcap_{i \in I} f_{A_{i}}^{+}$and $f_{A}^{-} \simeq \tilde{\bigcup} \bigcup_{i \in I} f_{A_{i}}^{-}$. Let $a \in S$, then by Lemma 3.16, there exists an irreducible DFS bi-ideal $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ of S over U such that $f_{A}^{+} \simeq f_{A_{i}}^{+}$and $f_{A}^{-} \supseteq f_{A_{i}}^{-}$and $f_{A}^{+}(a)=f_{A_{\alpha}}^{+}(a), f_{A}^{-}(a)=f_{A_{\alpha}}^{-}(a)$. Thus, $\left\langle\left(f_{A_{\alpha}}^{+}, f_{A_{\alpha}}^{-}\right) ; A_{\alpha}\right\rangle \in$
$\left\{\left\langle\left(f_{A_{i}}^{+}, f_{A_{i}}^{-}\right) ; A_{i}\right\rangle / i \in I\right\}$. Hence $\bigcap_{i \in I} f_{A_{i}}^{+} \tilde{\subseteq} f_{A_{\alpha}}^{+}$and $\tilde{\bigcup} \tilde{U}_{i \in I} f_{A_{i}}^{-} \tilde{\supseteq} f_{A_{\alpha}}^{-}$. So $\bigcap_{i \in I} f_{A_{i}}^{+}(a) \widetilde{\subseteq} f_{A_{\alpha}}^{+}(a)$ and $\bigcup_{i \in I} f_{A_{i}}^{-}(a) \supseteq$ $f_{A_{\alpha}}^{-}(a)$. Thus $\bigcap_{i \in I} f_{A_{i}}^{+} \simeq f_{A}^{+}$and $\bigcup_{i \in I} f_{A_{i}}^{-} \tilde{\supseteq} f_{A}^{-}$. Consequently $\bigcap_{i \in I} f_{A_{i}}^{+} \cong f_{A}^{+}$and $\bigcup_{i \in I} f_{A_{i}}^{-} \cong f_{A}^{-}$. By hypothesis, each DFS bi-ideal is semiprime. Hence, each DFS bi-ideal of S over U, is the intersection of all irreducible semiprime DFS bi-ideals of S over U which contain it.
$(v) \Rightarrow(i i)$ Let $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be a DFS bi-ideal of S over U. Then $\left\langle\left(f_{A}^{+} \sim f_{A}^{+}, f_{A}^{-}{ }^{*} f_{A}^{-}\right) ; A\right\rangle$ is a double-framed soft bi-ideal of S over U. Since $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a DFS semigroup of S over U, hence by Lemma 3.7, $f_{A}^{+} \tilde{\circ} f_{A}^{+} \tilde{\subseteq} f_{A}^{+}$, and $f_{A}^{-} \tilde{*} f_{A}^{-} \tilde{\supseteq} f_{A}^{-}$. By hypothesis, $\bigcap_{i \in I} f_{A_{i}}^{+} \cong f_{A}^{+}$and $\bigcup_{i \in I} f_{A_{i}}^{-} \cong f_{A}^{-}$where $\left\{\left\langle\left(f_{A_{i}}^{+}, f_{A_{i}}^{-}\right) ; A_{i}\right\rangle / i \in I\right\}$ are irreducible semiprime DFS bi-ideals of S over U. Thus, $f_{A}^{+} \widetilde{\circ} f_{A}^{+} \simeq f_{A_{i}}^{+}$and $f_{A}^{-} \tilde{*} f_{A}^{-} \cong f_{A_{i}}^{-}$for all $i \in I$. $f_{A}^{+} \simeq f_{A_{i}}^{+}$and $f_{A}^{-} \cong f_{A_{i}}^{-}$for all $i \in I$, because each $\left\langle\left(f_{A_{i}}^{+}, f_{A_{i}}^{-}\right) ; A_{i}\right\rangle$ is semiprime. Hence, $\bigcap_{i \in I} f_{A_{i}}^{+} \cong f_{A}^{+} \cong f_{A}^{+} \sim f_{A}^{+}$and $\bigcup_{i \in I} f_{A_{i}}^{-} \cong f_{A}^{-} \cong f_{A}^{-} \tilde{*} f_{A}^{-}$. Thus, $f_{A}^{+} \tilde{\circ} f_{A}^{+} \cong f_{A}^{+}$, and $f_{A}^{-} \tilde{*} f_{A}^{-} \cong f_{A}^{-}$.

In the following result, we study a relationship among strongly irreducible and and strongly prime DFS bi-ideals of S over U.

Theorem 3.18. Let S be both regular and intra-regular ordered semigroup. Then the following are equivalent:

Proposition 3.19. (i) Every DFS bi-ideal of S over U is strongly irreducible.
(ii) Every DFS bi-ideal of S over U is strongly prime.

Proof. $(i) \Rightarrow$ (ii) Let S be both regular and intra-regular and $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ a strongly irreducible DFS bi-ideal of S over U. Let $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ be DFS bi-ideals of S over U such that

$$
\left(g_{B}^{+} \tilde{\circ} h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \tilde{\circ} g_{B}^{+}\right) \widetilde{\subseteq} f_{A}^{+} \text {and }\left(h_{C}^{-} \tilde{\cup} g_{B}^{-}\right) \tilde{*}\left(g_{B}^{-} \tilde{\cup} h_{C}^{-}\right) \cong f_{A}^{-} .
$$

Since S is both regular and intra-regular, hence by Theorem 3.17, $\left(g_{B}^{+} \tilde{\circ} h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \tilde{\circ} g_{B}^{+}\right) \cong$ $g_{B}^{+} \tilde{\cap} h_{C}^{+}$and $\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \cong g_{B}^{-} \tilde{\cup} h_{C}^{-}$. Thus, $g_{B}^{+} \tilde{\cap} h_{C}^{+} \tilde{\subseteq} f_{A}^{+}$and $g_{B}^{-} \tilde{\cup} h_{C}^{-} \cong f_{A}^{-}$. Since $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ isstronglyirrducible, so either $g_{B}^{+} \simeq f_{A}^{+}$or $h_{C}^{+} \simeq f_{A}^{+}$and $g_{B}^{-} \supseteq f_{A}^{-}, h_{C}^{-} \supseteq f_{A}^{-}$. Thus, $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is strongly prime DFS bi-ideal of S over U.
$(i i) \Rightarrow(i)$. Suppose that $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a strongly prime DFS bi-ideal of S over U and $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ be DFS bi-ideals of S over U such that $g_{B}^{+} \tilde{\cap} h_{C}^{+} \tilde{\subseteq} f_{A}^{+}$and $g_{B}^{-} \tilde{\cup} h_{C}^{-} \tilde{\supseteq}$ f_{A}^{-}. Since

$$
\left(g_{B}^{+} \tilde{\circ} h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \tilde{\circ} g_{B}^{+}\right) \widetilde{\subseteq} g_{B}^{+} \tilde{\cap} h_{C}^{+} \simeq f_{A}^{+},
$$

and

$$
\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \supseteq g_{B}^{-} \tilde{\cup} h_{C}^{-} \supseteq f_{A}^{-} .
$$

Since $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a strongly prime DFS bi-ideal of S over U, so either $g_{B}^{+} \widetilde{\subseteq} f_{A}^{+}$or $h_{C}^{+} \widetilde{\subseteq}$ f_{A}^{+}and $g_{B}^{-} \supseteq f_{A}^{-}, h_{C}^{-} \supseteq f_{A}^{-}$. Thus, $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a strongly irreducible DFS bi-ideal of S over U.

Theorem 3.20. Each double-framed soft bi-ideal of an ordered semigroup S is strongly prime if and only if S is regular and intra-regular and the set of DFS bi-ideals of S over U is totally ordered by inclusion.

Proof. Suppose that each DFS bi-ideal of S over U is strongly prime. Then each DFS bi-ideal of S over U is semiprime. Thus, by Theorem 3.17, S is both regular and intra-regular. We show that the set of DFS bi-ideals of S over U is totally ordered under inclusion. Let $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ be DFS bi-ideals of S over U. Then by Theorem 3.17, $g_{B}^{+} \tilde{\cap} h_{C}^{+} \cong\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}$ $\left(h_{C}^{+} \sim g_{B}^{+}\right)$and $g_{B}^{-} \tilde{\cup} h_{C}^{-} \cong\left(g_{B}^{-} \sim h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right)$. Since each DFS bi-ideal of S over U is strongly prime, so $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle \sqcap\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ is strongly prime. Hence either $g_{B}^{+} \simeq g_{B}^{+} \tilde{\cap} h_{C}^{+}$or $h_{C}^{+} \simeq g_{B}^{+} \tilde{\cap} h_{C}^{+}$and $g_{B}^{-} \supseteq g_{B}^{-} \tilde{\cup} h_{C}^{-}, h_{C}^{-} \supseteq g_{B}^{-} \tilde{\cup} h_{C}^{-}$. If $g_{B}^{+} \simeq g_{B}^{+} \tilde{\cap} h_{C}^{+}$and $g_{B}^{-} \supseteq g_{B}^{-} \tilde{\cup} h_{C}^{-}$, then $g_{B}^{+} \tilde{\sim} h_{C}^{+}$ and $g_{B}^{-} \supseteq h_{C}^{-}$.

Conversely, assume that S is regular, intra-regular and the set of DFS bi-ideal of S over U is totally ordered under inclusion. We have to show that each DFS bi-ideal of S over U is strongly prime. Let $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be a DFS bi-ideal of S over U. Let $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ be DFS bi-ideals of S over U such that

$$
\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right) \simeq f_{A}^{+} \text {and }\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \tilde{*} g_{B}^{-}\right) \supseteq f_{A}^{-}
$$

Since S is both regular and intra-regular, by Theorem 3.17,

$$
\left(g_{B}^{+} \sim h_{C}^{+}\right) \tilde{\cap}\left(h_{C}^{+} \sim g_{B}^{+}\right) \cong g_{B}^{+} \tilde{\cap} h_{C}^{+} \text {and }\left(g_{B}^{-} \tilde{*} h_{C}^{-}\right) \tilde{\cup}\left(h_{C}^{-} \approx g_{B}^{-}\right) \cong g_{B}^{-} \tilde{\cup} h_{C}^{-}
$$

Thus, $g_{B}^{+} \tilde{\cap} h_{C}^{+} \simeq f_{A}^{+}$and $g_{B}^{-} \sim \sim h_{C}^{-} \supseteq f_{A}^{-}$Since the set of DFS bi-ideals of S over U is totally ordered, so either $g_{B}^{+} \simeq h_{C}^{+}$or $h_{C}^{+} \simeq g_{B}^{+}$and $g_{B}^{-} \supseteq h_{C}^{-}, h_{C}^{-} \supseteq g_{B}^{-}$. That is, either $g_{B}^{+} \tilde{\cap} h_{C}^{+} \cong g_{B}^{+}$ or $g_{B}^{+} \tilde{\cap} h_{C}^{+} \cong h_{C}^{+}$and $g_{B}^{-} \sim \sim h_{C}^{-} \cong g_{B}^{-}, g_{B}^{-} \tilde{\cup} h_{C}^{-} \cong h_{C}^{-}$. Therefore, either $g_{B}^{+} \simeq f_{A}^{+}$or $h_{C}^{+} \simeq f_{A}^{+}$and $g_{B}^{-} \supseteq f_{A}^{-}, h_{C}^{-} \supseteq f_{A}^{-}$and $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is strongly prime.
Theorem 3.21. If the set of DFS bi-ideals of an ordered semigroup S over U is totally ordered under inclusion, then S is both regular and intra-regular if and only if each double-framed soft bi-ideal of S over U is prime.

Proof. Suppose that S is both regular and intra-regular. Let $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be a DFS bi-ideal of S over U and $\left.\underset{\sim}{\langle }\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ be DFS bi-ideals of S over U such that $g_{B}^{+} \stackrel{\sim}{\circ} h_{C}^{+} \underset{\sim}{\sim} f_{A}^{+}$ and $g_{B}^{-} \sim^{*} h_{C}^{-} \supseteq f_{A}^{-}$. Since the set of DFS bi-ideals of S is totally ordered, therefore, either $g_{B}^{+} \simeq h_{C}^{+}$or $h_{C}^{+} \simeq g_{B}^{+}$and $g_{B}^{-} \supseteq h_{C}^{-}, h_{C}^{-} \supseteq g_{B}^{-}$. Suppose that $g_{B}^{+} \simeq h_{C}^{+}$and $g_{B}^{-} \supseteq h_{C}^{-}$, then $g_{B}^{+} \sim g_{B}^{+} \simeq g_{B}^{+} \tilde{\circ} h_{C}^{+} \simeq f_{A}^{+}$ and $g_{B}^{-} \tilde{*} g_{B}^{-} \supseteq g_{B}^{-} \sim h_{C}^{-} \supseteq f_{A}^{-}$. By Theorem 3.17, $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is semiprime. So, $g_{B}^{+} \simeq f_{A}^{+}$and $g_{B}^{-} \supseteq f_{A}^{-}$. Hence, $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is prime DFS bi-ideal of S over U.

Conversely, assume that every DFS bi-ideal of S over U is prime. Since every prime DFS bi-ideal of S over U is semiprime, so by Theorem 3.17, S is both regular and intra-regular.

Theorem 3.22. For an ordered semigroup S, the following assertions are equivalent:
(i) The set of DFS bi-ideals of S over U is totally ordered under inclu-sion.
(ii) Each DFS bi-ideal of S over U is strongly irreducible.
(iii) Each DFS bi-ideal of S over U is irreducible.

Proof. $(i) \Rightarrow($ ii $)$. Let $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be a DFS bi-ideal of S over U and $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ beDFSbi-idealsof S over U such that $g_{B}^{+} \tilde{\cap} h_{C}^{+} \simeq f_{A}^{+}$and $g_{B}^{-} \tilde{\cup} h_{C}^{-} \supseteq f_{A}^{-}$. Since the set of DFS bi-ideals of S over U is totally ordered $g_{B}^{+} \simeq h_{C}^{+}$or $h_{C}^{+} \simeq g_{B}^{+}$and $g_{B}^{-} \simeq h_{C}^{-}, h_{C}^{-} \supseteq g_{B}^{-}$. Thus, either $g_{B}^{+} \tilde{\cap} h_{C}^{+} \cong g_{B}^{+}$or $g_{B}^{+} \tilde{\cap} h_{C}^{+} \cong h_{C}^{+}$and $g_{B}^{-} \widetilde{\cup} h_{C}^{-} \cong g_{B}^{-}, g_{B}^{-} \tilde{\cup} h_{C}^{-} \cong h_{C}^{-}$. Thus, $g_{B}^{+} \tilde{\cap} h_{C}^{+}$ $\widetilde{\simeq} f_{A}^{+}$and $g_{B}^{-} \tilde{\cup} h_{C}^{-} \supseteq f_{A}^{-}$imply that either $g_{B}^{+} \simeq f_{A}^{+}$or $h_{C}^{+} \simeq f_{A}^{+}$and $g_{B}^{-} \supseteq f_{A}^{-}, h_{C}^{-} \supseteq f_{A}^{-}$. Hence $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is strongly irreducible.
$(i i) \Rightarrow(i i i)$. Let $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ be a DFS bi-ideal of S over U and $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ be DFS bi-ideals of S over U such that $g_{B}^{+} \tilde{\cap} h_{C}^{+} \cong f_{A}^{+}$and $g_{B}^{-} \tilde{\cup} h_{C}^{-} \cong f_{A}^{-}$. Then, $f_{A}^{+} \simeq g_{B}^{+}$or $f_{A}^{+} \simeq h_{C}^{+}$and $f_{A}^{-} \cong g_{B}^{-}, f_{A}^{-} \supseteq h_{C}^{-}$. By hypothesis, either $g_{B}^{+} \widetilde{\subseteq} f_{A}^{+}$or $h_{C}^{+} \simeq f_{A}^{+}$, and $g_{B}^{-} \cong f_{A}^{-}$, $h_{C}^{-} \cong f_{A}^{-}$. Thus, $g_{B}^{+} \cong f_{A}^{+}$or $h_{C}^{+} \cong f_{A}^{+}$, and $g_{B}^{-} \cong f_{A}^{-}, h_{C}^{-} \cong f_{A}^{-}$. That is, $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is irreducible DFS bi-ideal of S over U.
(iii) $\Rightarrow(i)$. Suppose that $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ and $\left\langle\left(h_{C}^{+}, h_{C}^{-}\right) ; C\right\rangle$ be DFS bi-ideals of S over U. Then $g_{B}^{+} \tilde{\cap} h_{C}^{+}$and $g_{B}^{-} \tilde{\cup} h_{C}^{-}$are soft bi-ideals of S over U. Also, $g_{B}^{+} \tilde{\cap} h_{C}^{+} \cong g_{B}^{+} \tilde{\cap} h_{C}^{+}$and $g_{B}^{-} \tilde{\cup} h_{C}^{-} \cong g_{B}^{-} \tilde{\cup} h_{C}^{-}$. So by hypothesis, either $g_{B}^{+} \cong g_{B}^{+} \tilde{\cap} h_{C}^{+}$or $h_{C}^{+} \cong g_{B}^{+} \tilde{\cap} h_{C}^{+}$and $g_{B}^{-} \cong g_{B}^{-} \tilde{\cup} h_{C}^{-}, h_{C}^{-} \cong g_{B}^{-} \tilde{\cup} h_{C}^{-}$. That is, either $g_{B}^{+} \simeq h_{C}^{+}$or $h_{C}^{+} \widetilde{\subseteq} g_{B}^{+}$and $g_{B}^{-} \supseteq h_{C}^{-}, h_{C}^{-} \simeq g_{B}^{-}$. Hence the set of DFS bi-ideals of S over U is totally ordered.

4 Conclusion

We have considered the following items.

1. To introduce the notions of prime (resp., strongly prime, irreducible, and strongly irreducible) DFS bi-ideals in ordered semigroups and to give several examples of these notions. To give the basic properties of these notions and to characterize ordered semigroups by means of these types of DFS bi-ideals.
2. To chracterize regular and intra-regular ordered semigroups by means of prime and semiprime DFS bi-ideals.
3. To study the relationship between prime and strongly prime DFS bi-ideals and to characterize the class of those ordered semigroups for which the notions of prime and semiprime DFS bi-ideals are coincide.
4. To introduce the concepts of irreducible and strongly irreducible DFS bi-ideals and to investigate the basic properties of these notions.

References

[1] U. Acar, F. Koyuncu, B. Tanay, Soft sets and soft rings, Computers and Mathematics with Applications, 59 (2010), 3458-3463.
[2] T. Asif, A. Khan, J. Tang, Fully prime double-framed soft ordered semigroups, Open Journal of Science and Technology, 2 (2019), 17-25.
[3] T. Asif, F. Yousafzai, A. Khan, et al., Ideal theory in ordered AG-groupoid based on doubleframed soft sets, Journal of Mutliple-Valued Logic and Soft Computing, 33 (2019), 27-49.
[4] A.O. Atagun, A. Sezgin, Soft substructures of rings, fields and modules, Computers and Mathematics with Applications, 61 (2011), 592-601.
[5] N. Cagman, S. Enginoglu, FP-soft set theory and its applications, Annals of Fuzzy Mathematics and Informatics, 2 (2011), 219-226.
[6] F. Feng, Soft rough sets applied to multicriteria group decision making, Annals of Fuzzy Mathematics and Informatics, 2 (2011), 69-80.
[7] F. Feng, Y.B. Jun, X. Zhao, Soft semirings, Computers and Mathematics with Applications, 56 (2008), 2621-2628.
[8] Y.B. Jun, Soft BCK/BCI-algebras, Computers and Mathematics with Applications, 56 (2008), 1408-1413.
[9] Y.B. Jun, S.S. Ahn, Double-framed soft sets with applications in BCK/BCI-algebras, Journal of Applied Mathematics, (2012), 15.
[10] Y.B. Jun, H.S. Kim, J. Neggers, Pseudo d-algebras, Information Science, 179 (2009), 17511759.
[11] Y.B. Jun, K.J. Lee, A. Khan, Soft ordered semigroups, Mathematical Logic, 56 (2010), 42-50.
[12] Y.B. Jun, K.J. Lee, C.H. Park, Soft set theory applied to ideals in d-algebras, Computers and Mathematics with Applications, 57 (2009), 367-378.
[13] Y.B. Jun, K.J. Lee, J. Zhan, Soft p-ideals of soft BCI-algebras, Computers and Mathematics with Applications, 58 (2009), 2060-2068.
[14] Y.B. Jun, C.H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Information Science, 178 (2008), 2466-2475.
[15] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Mathematica Japonica, 35(6) (1990), 1051-1056.
[16] N. Kehayopulu, On semilattices of simple poe-semigroups, Mathematica Japonica, 38(2) (1993), 305-318.
[17] N. Kehayopulu, Ideals and Green's relations in ordered semigroups, International Journal of Mathematics and Mathematical Sciences, 2006 (2006), 8 pages.
[18] N. Kehayopulu, G. Lepouras, M. Tsingelis, On right regular and right duo ordered semigroups, Mathematica Japonica, 46(2) (1997), 311-315.
[19] N. Kehayopulu, M. Tsingelis, Regular ordered semigroups in terms of fuzzy subsets, Information Sciences, 176(24) (2006), 3675-3693.
[20] M.M. Khalaf, A. Khan, T. Asif, F. Yousafzai, On double-frames soft sets of non-associative ordered semigroups, Journal of Ramanujan Society of Mathematics and Mathematical Sciences, 8(1) (2020), 97-118.
[21] A. Khan, On fuzzy ordered semigroups, Ph.D Thesis, Quaid-i-Azam Uni-versity, Islamabad, Pakistan, 2010.
[22] P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Computers and Mathematics with Applications, 45 (2003), 555-562.
[23] P.K. Maji, A.R. Roy, R. Biswas, An application of soft sets in a decision making problem, Computers and Mathematics with Applications, 44 (2002), 1077-1083.
[24] D. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications, 37 (1999), 19-31.
[25] S. Naz, M. Shabir, On prime soft bi-hyperideals of semihypergroups, Journal of Intelligent and Fuzzy Systems, 26 (2014), 1539-1556.
[26] C.H. Park, Y.B. Jun, M.A. Ozturk, Soft WS-algebras, Communications of the Korean Mathematical Society, 23 (2008), 313-324.
[27] M. Shabir, Y.B. Jun, M. Bano, On prime fuzzy bi-ideals of semigroups, Iranian Journal of Fuzzy Systems, 7(3) (2010), 115-128.
[28] M. Shabir, N. Kanwal, Prime bi-ideals of semigroups, Southeast Asian Bulletin of Mathematics, 31 (2007), 757-764.
[29] F. Yousafzai, T. Asif, A. Khan, B. Davvaz, A study of non-associative ordered semigroups in terms of semilattices via smallest (double-framed soft) sets, International Journal of Analysis and Applications, 16(4) (2018), 484-502.
[30] J. Zhan, Y.B. Jun, Soft BL-algebras based on fuzzy sets, Computers and Mathematics with Applications, 59 (2010), 2037-2046.

