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Abstract

The Lifting Idempotent Property (LIP ) of ideals in commuta-
tive rings inspired the study of Boolean lifting properties in the
context of other concrete algebraic structures (MV -algebras,
commutative ℓ-groups, BL-algebras, bounded distributive lat-
tices, residuated lattices, etc.), as well as for some types of
universal algebras (C. Muresan and the author defined and
studied the Congruence Boolean Lifting Property (CBLP ) for
congruence modular algebras). A lifting ideal of a ring R is
an ideal of R fulfilling LIP . In a recent paper, Tarizadeh
and Sharma obtained new results on lifting ideals in commu-
tative rings. The aim of this paper is to extend an important
part of their results to congruence with CBLP in semidegen-
erate congruence modular algebras. The reticulation of such
algebra will play an important role in our investigations (re-
call that the reticulation of a congruence modular algebra A
is a bounded distributive lattice L(A) whose prime spectrum
is homeomorphic with Agliano’s prime spectrum of A). Al-
most all results regarding CBLP are obtained in the setting of
semidegenerate congruence modular algebras having the prop-
erty that the reticulations preserve the Boolean center. The
paper contains several properties of congruences with CBLP .
Among the results we mention a characterization theorem of
congruence with CBLP . We achieve various conditions that
ensure CBLP . Our results can be applied to a lot of types of
concrete structures: commutative rings, ℓ-groups, distributive
lattices, MV -algebras, BL-algebras, residuated lattices, etc.
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A Title

  

1 Introduction
An ideal I of a unital ring R is said to be a lifting ideal if it fulfills the Lifting Idempotent Property

(LIP ): any idempotent of the quotient ring R/I can be lifted to an idempotent of R [37], [39]. If any ideal
of R is a lifting ideal, then we say that R has LIP . A vast literature was dedicated to lifting ideals and to
rings that fulfill LIP (see [1], [3], [27], [35], [37], [39]) and many important results for rings with LIP were
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obtained. For example, in the case of commutative rings it was proved a notable theorem that asserts that
the rings with LIP , the clean rings and the exchange rings coincide [37].

Inspired by the theory of rings with LIP , various lifting properties were defined for other algebraic
structures (MV -algebras [15], commutative ℓ-groups [25], BL-algebras [14], pseudo BL-algebras [7], [8],
bounded distributive lattices [12], residuated lattices [19], orthomodular lattices [31], etc.). A lifting prop-
erty, named Congruence Boolean Lifting Property (CBLP ), was studied in a universal algebra framework:
for congruence distributive algebras [22] and for semidegenerate congruence modular algebras [20].

In the recent paper [39], Tarizadeh and Sharma obtained new algebraic and topological results on lifting
ideals in a commutative ring (among them we mention an important characterization theorem for lifting
ideals).

The aim of this paper is to extend some results of [39] to congruences with CBLP in some types of
universal algebras, so we continue the investigations on CBLP started in [20].

The wonderful commutator theory, developed by Fresee and McKenzie in [16], allows us to define a
”prime spectrum” Spec(A) of any congruence modular algebra A. According to Agliano’s paper [2], Spec(A)
fulfills remarkable topological properties. On the other hand, the hypothesis that the congruence modular
algebra A is semidegenerate causes the set Con(A) of congruences of A to be endowed with a structure of
commutative and integral complete ℓ-groupoid [9] (in fact, Con(A) becomes an mi-structure in the sense
of [24]).

Almost all results regarding CBLP are obtained in the setting of semidegenerate congruence modular
algebras having the property that the reticulation preserves the Boolean center.

The paper contains several properties of congruence with CBLP . Among the results we mention a
characterization theorem of congruence with CBLP . We achieve various conditions that assure CBLP .
Our results can be applied to a lot of types of concrete structures: commutative rings, ℓ-groups, distributive
lattices, MV -algebras, BL-algebras, residuated lattices, etc.

Now we shall describe the content of the paper. Section 2 contains some preliminaries: the definition
and elementary properties of commutator operation [16], some basic facts on semidegenerate congruence
modular algebras [2], [32], prime congruences, the radical of a congruence, Agliano’s spectrum [2].

In Section 3 we remember from [18], [21], the construction and the main properties of reticulation L(A)
associated with any semidegenerate congruence modular algebra A that fulfills the following property: the
set K(A) of compact congruences of A is closed under the commutator. The reticulation L(A) is a bounded
distributive lattice whose prime spectrum Spec(L(A)) is homeomorphic with Spec(A). This functorial
construction was firstly done for commutative rings [3], [29], [38], then for many other algebraic structures.
It is a good vehicle for exporting some properties from bounded distributive lattices to algebras and vice-
versa (see [3], [13], [14], [15], [18], [33], [36], [38]). In this paper we shall use the reticulation for transporting
some properties of lifting properties from rings to algebras.

In Section 4 we characterize the algebras whose reticulation preserves the Boolean center. We prove that
the Boolean center B(Con(A)) of an algebra A is isomorphic to the Boolean algebra Clop(Spec(A)) of clopen
subsets of Spec(A) (this results generalizes the Grothendieck correspondence between the idempotents of
a ring and the clopens of its prime spectrum). The mentioned result (= Theorem 4.9) is used in Section
5 to prove some properties of congruences with CBLP . We find the form of the clopen subsets of the
maximal spectrum Max(A) of the algebra A and we characterize the situation whenever Rad(A) has CBLP
(Rad(A) =

∩
Max(A) is a congruence that generalizes the Jacobson radical of a ring).

A characterization theorem of congruences with CBLP is obtained in Section 6 (see Theorem 6.3). The
proof of this result is based on Hochster’s theorem [13], [26]: for any bounded distributive lattice L there
exists a commutative ring R such that the reticulation L(R) of R [38] is isomorphic with L.

Section 7 concerns the relationship between lifting properties and orthogonal sets of complemented
congruences. If a morphism u of algebras lifts the complemented congruences, then it is proven that
u lifts the countable orthogonal sets of complemented congruences. We investigate how some particular
orthogonal sets of complemented congruences can be lifted by the morphisms of the form A→ A/θ, where
θ is an arbitrary congruence of the algebra A.
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2 Preliminaries
Let τ be a finite signature of universal algebras. Throughout this paper we shall assume that the

algebras have the signature τ . Let A be an algebra and Con(A) the complete lattice of its congruences;
∆A and ∇A shall be the first and the last elements of Con(A). If X ⊆ A2, then CgA(X) will be the
congruence of A generated by X; if X = {(a, b)} with a, b ∈ A, then CgA(a, b) will denote the (principal)
congruence generated by {(a, b)}. Con(A) is an algebraic lattice: the finitely generated congruences of A
are its compact elements. K(A) will denote the set of compact congruences of A. We observe that K(A) is
closed under finite joins of Con(A) and ∆A ∈ K(A).

For any θ ∈ Con(A), A/θ is the quotient algebra of A w.r.t. θ; if a ∈ A, then a/θ is the congruence
class of a modulo θ. We shall denote by pθ : A → A/θ the canonical surjective τ - morphism defined by
pθ(a) = a/θ, for all a ∈ A.

Let V be a congruence modular variety of τ - algebras. Following [16, page 31], the commutator is the
greatest operation [·, ·]A on the congruence lattices Con(A) of members A of V such that for any surjective
morphism f : A→ B of V and for any α, β ∈ Con(A), the following conditions hold:

(2.1) [α, β]A ⊆ α ∩ β;
(2.2) [α, β]A ∨Ker(f) = f−1([f(α ∨Ker(f)), f(β ∨Ker(f))]B).
If α, β, θ ∈ Con(A) then, by (2.2) we get
(2.3) ([α, β]A ∨ θ)/θ = [(α ∨ θ)/θ, (β ∨ θ)/θ]A/θ.

The commutator operation is commutative, increasing in each argument and distributive with respect to
arbitrary joins. If there is no danger of confusion, then we write [α, β] instead of [α, β]A.

Proposition 2.1. [16] For any congruence modular variety V the following are equivalent:

(1) V has Horn - Fraser property: if A,B are members of V then the lattices Con(A × B) and
Con(A)× Con(B) are isomorphic;

(2) [∇A,∇A] = ∇A, for all A ∈ V;

(3) [θ,∇A] = θ, for all A ∈ V and θ ∈ Con(A).

Following [32], a variety V is semidegenerate if no nontrivial algebra in V has one - element subalgebras.
By [32], a variety V is semidegenerate if and only if for any algebra A in V, the congruence ∇A is compact.

Proposition 2.2. [2] If V is a semidegenerate congruence modular variety, then for each algebra A in V
we have [∇A,∇A] = ∇A.

Let A be a semidegenerate congruence modular algebra. Therefore one can define on the complete lattice
Con(A) a residuation operation ( = implication) α → β =

∨
{γ|[α, γ] ⊆ β} and an annihilator operation (

= negation) α⊥ = α⊥A = α → ∆A =
∨
{γ|[α, γ] = ∆A}. The implication → fulfills the usual residuation

property: for all α, β, γ ∈ Con(A), α ⊆ β → γ if and only if [α, β] ⊆ γ. By using Propositions 2.1 and 2.2
we remark that (Con(A),∨,∧, [·, ·],→,∆A,∇A) is commutative and integral complete ℓ - groupoid (see [9]).
In fact, (Con(A),∨,∩, [·, ·]A,∆A,∇A) is a multiplicative - ideal structure (= mi - structure) in the sense of
[24]. Thus all the results contained in [24] hold for the particular mi - structure Con(A).

For the rest of the section we fix an algebra A in a semidegenerate congruence modular variety V.

Lemma 2.3. [21] For all congruences α, β, γ the following hold:

(1) α ∨ β = ∇A implies [α, β] = α ∩ β;

(2) α ∨ β = α ∨ γ = ∇A implies α ∨ [β, γ] = α ∨ (β ∩ γ) = ∇A;

(3) α ∨ β = ∇A implies [α, α]n ∨ [β, β]n = ∇A, for all integers n > 0;

For all congruences α, β ∈ Con(A) and for any integer n ≥ 1 we define by induction the congruence
[α, β]n: [α, β]1 = [α, β] and [α, β]n+1 = [[α, β]n, [α, β]n]. By convention, we set [α, α]0 = α.

Lemma 2.4. If α, β, θ ∈ Con(A) and θ ⊆ α ∩ β, then we have [α/θ, β/θ]n = ([α, β]n ∨ θ)/θ.



18 G. Georgescu

Following [16, page 82] or [2, page 582], a congruence ϕ ∈ Con(A)−{∇A} is prime if for all α, β ∈ Con(A),
[α, β] ⊆ ϕ implies α ⊆ ϕ or β ⊆ ϕ. Let us introduce the following notations:

Spec(A) is the set of prime congruences and Max(A) is the set of maximal elements of Con(A). If
θ ∈ Con(A)−{∇A}, then there exists ϕ ∈Max(A) such that θ ⊆ ϕ (because ∇A is a compact congruence).
By [2], the following inclusion Max(A) ⊆ Spec(A) holds. We shall denote by Rad(A) the intersection of all
maximal congruences of A; Rad(A) generalizes the notion of Jacobson radical of a ring.

According to [2, page 582], the radical ρ(θ) = ρA(θ) of a congruence θ ∈ A is defined by ρA(θ) =
∧
{ϕ ∈

Spec(A)|θ ⊆ ϕ}; if θ = ρ(θ), then θ is a radical congruence. We shall denote by RCon(A) the set of radical
congruences of A. The algebra A is semiprime if ρ(∆A) = ∆A.

Lemma 2.5. [2, 21] For all congruences α, β ∈ Con(A) the following hold:

(1) α ⊆ ρ(α);

(2) ρ(α ∩ β) = ρ([α, β]) = ρ(α) ∩ ρ(β);

(3) ρ(α) = ∇A iff α = ∇A;

(4) ρ(α ∨ β) = ρ(ρ(α) ∨ ρ(β));

(5) ρ(ρ(α)) = ρ(α);

(6) ρ(α) ∨ ρ(β) = ∇A iff α ∨ β = ∇A;

(7) ρ([α, α]n) = ρ(α), for all integers n ≥ 0.

Recall that for an arbitrary family (αi)i∈I of congruences in A, the following equality holds:

ρ(
∨
i∈I

αi) = ρ(
∨
i∈I

ρ(αi)).

Then one can introduce the arbitrary joins in RCon(A): if (αi)i∈I ⊆ RCon(A), then we denote
·∨

i∈I

αi =

ρ(
∨
i∈I

αi). Thus it is easy to prove that (RCon(A),

·∨
,∩, ρ(∆A),∇A) is a frame (see [29] as a basic text for

the frame theory).

Proposition 2.6. [2] Assume that K(A) is closed under the commutator operation [·, ·]. For any congruence
θ of A the following equality holds:

ρ(θ) =
∨

{α ∈ K(A)|[α, α]n ⊆ θ, for some n ≥ 0}.

In particular, we have ρ(∆A) =
∨
{α ∈ K(A)|[α, α]n = ∆A, for some n ≥ 0}. Then the algebra A is

semiprime if and only if for any α ∈ K(A) and for any integer n ≥ 0, [α, α]n = ∆A implies α = ∆A. Let
u : A → B be an arbitrary morphism in V and u∗ : Con(B) → Con(A), u• : Con(A) → Con(B) are the
maps defined by u∗(β) = u−1(β) and u•(α) = CgB(f(α)), for all α ∈ Con(A) and β ∈ Con(B). Thus u• is
the left adjoint of u∗: for all α ∈ Con(A), β ∈ Con(B), we have u•(α) ⊆ β iff α ⊆ u∗(β).

For any θ ∈ Con(A) we denote VA(θ) = V (θ) = {ϕ ∈ Spec(A)|θ ⊆ ϕ} and DA(θ) = D(θ) = Spec(A) −
V (θ). If α, β ∈ Con(A), then D(α) ∩ D(β) = D([α, β]) and V (α) ∪ V (β) = V ([α, β]). For any family
of congruences (θi)i∈I we have

∪
i∈I

D(θi) = D(
∨
i∈I

θi) and
∩
i∈I

V (θi) = V (
∨
i∈I

θi). Thus Spec(A) becomes a

topological space whose open sets are D(θ), θ ∈ Con(A). We remark that this topology extends the Zariski
topology (defined on the prime spectra of commutative rings) and the Stone topology (defined on the prime
spectra of bounded distributive lattices). The properties of Spec(A) were intensively studied by Agliano in
[2] (for this reason we shall call Spec(A) the Agliano spectrum of the algebra A).

We mention that the family (D(α))α∈K(A) is a basis of open sets for the topology of Spec(A). We remark
that the set Max(A) of maximal congruences of A can be considered as a subspace of Spec(A).
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3 Reticulation of a universal algebra
The reticulation of a ring R is a bounded distributive lattice L(R) whose prime spectrum (with the

Stone topology [5]) is homeomorphic with the prime spectrum of R (with the Zariski topology [4]). This
notion was generalized in [21] to a universal algebra framework, then it was used to study remarkable classes
of universal algebras [18]. In this section we shall remind the principal properties of the reticulation of a
universal algebra (cf. [21]).

Let us fix a semidegenerate congruence modular variety V and A an algebra of V such that the set K(A)
of compact congruences of A is closed under the commutator operation. Consider the following equivalence
relation on Con(A): for all α, β ∈ Con(A), α ≡ β if and only if ρ(α) = ρ(β). Let α̂ be the equivalence class
of α ∈ Con(A) and 0 = ∆̂A, 1 = ∇̂A. Then ≡ is a congruence of the lattice Con(A) so the quotient set
L(A) = K(A)/≡ is a bounded distributive lattice, named the reticulation of the algebra A (see [21]). We
shall denote by λA : K(A) → L(A) the function defined by λA(α) = α̂, for all α ∈ K(A).

We remark that for all α, β ∈ K(A) we have λA(α) = λA(β) if and only if ρ(α) = ρ(β).

Lemma 3.1. [21] For all congruences α, β ∈ K(A) the following hold:

(1) λA(α ∨ β) = λA(α) ∨ λA(β);

(2) λA(α ∩ β) = λA([α, β]) = λA(α) ∧ λA(β);

(3) λA(α) = 1 iff α = ∇A;

(4) λA(α) = 0 iff [α, α]k = ∆A, for some integer k ≥ 1;

(5) λA([α, α]
k) = λA(α), for all integers k ≥ 1;

(6) λA(α) = 0 iff α ⊆ ρ(∆A);

(7) If A is semiprime, then λA(α) = 0 iff α = ∆A;

(8) λA(α) ≤ λA(β) iff ρ(α) ⊆ ρ(β) iff [α, α]n ⊆ β, for some integer n ≥ 1.

Let L be a bounded distributive lattice and Id(L) the set of its ideals. Then SpecId(L) will denote the
set of prime ideals in L and MaxId(L) the set of maximal ideals in L. For any ideal I of L we denote
DId(I) = {Q ∈ SpecId(L)|I 6⊆ Q} and VId(I) = {Q ∈ SpecId(L)|I ⊆ Q}. If x ∈ L, then we use the notation
DId(x) = DId((x]) = {Q ∈ SpecId(L)|x /∈ Q} and VId(x) = VId((x]) = {Q ∈ SpecId(L)|x ∈ Q}, where (x]
is the principal ideal of L generated by the set {x}. Recall from [29] that the family (DId(x))x∈L is a basis
of open sets for the Stone topology on SpecId(L).

For all θ ∈ Con(A) and I ∈ Id(L(A)) we shall denote

θ∗ = {λA(α)|α ∈ K(A), α ⊆ θ} and I∗ =
∨

{α ∈ K(A)|λA(α) ∈ I}.

Thus θ∗ is an ideal of the lattice L(A) and I∗ is a congruence of A. In this way one obtains two order -
preserving functions (·)∗ : Con(A) → Id(L(A)) and (·)∗ : Id(L(A)) → Con(A).

The functions (·)∗ and (·)∗ will play an important role in proving the transfer properties of reticulation.
The following four results constitute the first steps in obtaining transfer properties. They will be used many
times in the proofs.

Lemma 3.2. [18] The following assertions hold

(1) If θ, χ ∈ Con(A), then [θ, χ]∗ = (θ ∩ χ)∗ = θ∗
∩
χ∗;

(2) If (θi)i∈I is a family of congruences of A, then (
∨

i∈I θi)
∗ =

∨
i∈I θ

∗
i .

Lemma 3.3. [21] For all θ ∈ Con(A), α ∈ K(A) and I ∈ Id(L(A)) the following hold:

(1) α ⊆ I∗ iff λA(α) ∈ I;

(2) (θ∗)∗ = ρ(θ) and (I∗)
∗ = I;
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(3) θ∗ = (ρ(θ))∗ and ρ(I∗) = I∗;

(4) If θ ∈ Spec(A), then (θ∗)∗ = θ and θ∗ ∈ SpecId(L(A));

(5) If I ∈ SpecId(L(A)), then I∗ ∈ Spec(A);

(6) If θ ∈ Spec(A), then α ⊆ θ if and only if λA(α) ∈ θ∗;

(7) If α ∈ K(A), then α∗ is exactly the principal ideal (λA(α)] of the lattice L(A).

According to the previous lemma one can consider the order - preserving functions u : Spec(A) →
SpecId(L(A)) and v : SpecIdL((A)) → Spec(A), defined by u(ϕ) = ϕ∗ and v(P ) = P∗, for all ϕ ∈ Spec(A)
and P ∈ SpecId(L(A)). For any θ ∈ Con(A) we have u(V (θ)) = VId(θ

∗) (see the proof of Proposition 4.17
in [21]). By Lemma 3.4(7), for each α ∈ K(A) we have u(V (α)) = VId(α

∗) = VId(λA(α)).

Proposition 3.4. [21] The two functions u : Spec(A) → SpecId(L(A)) and v : SpecIdL((A)) → Spec(A)
are homeomorphisms, inverse to one another.

Proposition 3.5. [21] The two functions (·)∗|RCon(A) : RCon(A) → Id(L(A)) and (·)∗ : Id(L(A)) →
RCon(A) are frame isomorphisms, inverse to one another.

Remark 3.6. We know that the prime spectrum SpecId(L(A) of the bounded distributive lattice L(A) is
a spectral space in the sense of [13, 26] (or coherent space in the terminology of [29]). By Proposition 3.4
it follows that Spec(A) is a spectral space (see [2] for a detailed discussion on the topological properties of
Spec(A)).

Remark 3.7. By applying Proposition 3.4 it follows that Max(A) is homeomorphic to the space MaxId(L(A)
of maximal ideal of the lattice L(A). According to [29, page 66], MaxId(L(A)) is a compact T1-space, there-
fore Max(A) is also a compact T1-space.

4 Algebras whose reticulation preserves the Boolean center
Let us consider an algebra A in a semidegenerate congruence modular variety V such that the set K(A)

of finitely generated congruences of A is closed under the commutator operation.
Let us denote by B(Con(A)) the set of complemented elements in the bounded lattice Con(A). Since

Con(A) has a canonical structure of integral bounded unital ℓ- groupoid in the sense of Section 3 of
[28], by applying Lemma 4 from [28] or [17], it follows that B(Con(A)) is a Boolean algebra in which
α⊥ is the complement of a congruence α ∈ B(Con(A)). Then B(Con(A)) is said to be the Boolean
center of Con(A) (or, shortly, the Boolean center of A). We shall without mention the basic properties of
complemented elements (see eg. Section 6 of [21]). For example, a congruence θ is complemented if and
only if α ∨ α⊥ = ∇A. For all θ, ϑ ∈ Con(A) and α ∈ B(Con(A)) we have θ ∩ α = [θ, α], α → θ = α⊥ ∨ θ
and (θ ∩ ϑ) ∨ α = (θ ∨ α) ∩ (ϑ ∨ α).

Lemma 4.1. [21] For all congruences θ, ϑ ∈ Con(A) the following hold:

(1) If θ ∨ ϑ = ∇A and [θ, ϑ] = ∆A, then θ, ϑ ∈ B(Con(A));

(2) For any integer n ≥ 1, if θ ∨ ϑ = ∇A and [[θ, θ]n, [ϑ, ϑ]n] = ∆A, then [θ, θ]n, [ϑ, ϑ]n ∈ B(Con(A));

(3) B(Con(A)) ⊆ K(A).

If L is a bounded distributive lattice, then B(L) will denote the Boolean algebra of complemented
elements of L. The Boolean algebra B(L) is called the Boolean center of L.

Lemma 4.2. [21] If α ∈ B(Con(A)), then λA(α) ∈ B(L(A)).

The previous lemma allows us to consider the following map:

λA|B(Con(A)) : B(Con(A)) → B(L(A)).



New results on Congruence Boolean Lifting Property 21

Lemma 4.3. [21] The map λA|B(Con(A)) : B(Con(A)) → B(L(A)) is an injective Boolean morphism.

The following proposition characterizes the algebras A of V for which λA|B(Con(A)) is a Boolean isomor-
phism.

Proposition 4.4. The following assertions are equivalent:

(1) The map λA|B(Con(A)) : B(Con(A)) → B(L(A)) is a Boolean isomorphism;

(2) The map λA|B(Con(A)) : B(Con(A)) → B(L(A)) is surjective;

(3) For any α ∈ K(A), if λA(α) ∈ B(L(A)), then there exists an integer n ≥ 0 such that [α, α]n ∈
B(Con(A));

(4) For any α ∈ K(A), λA(α) ∈ B(L(A)) if and only if there exists an integer n ≥ 0 such that
[α, α]n ∈ B(Con(A)).

Proof. (1) ⇔ (2) This equivalence follows by using Lemma 4.3.
(2) ⇒ (3) Let α be a compact congruence of A such that λA(α) ∈ B(L(A)). According to the hypothesis

(2), there exists β ∈ B(Con(A)) such that λA(α) = λA(β). By Lemma 3.1(8), there exists an integer
n ≥ 0 such that [α, α]n ≤ β ≤ α. From β ∈ B(Con(A)) we get β ∨ γ = ∇A and [β, γ] = ∆A, for
some γ ∈ B(Con(A)). Thus α ∨ γ = ∇A, hence [α, α]n ∨ [γ, γ]n = ∇A (cf. Lemma 2.4(3)). We remark
that [[α, α]n, [γ, γ]n] ⊆ [α, γ] = ∆A, [[α, α]n, [γ, γ]n] = ∆A. Applying Lemma 4.1(2) we obtain [α, α]n ∈
B(Con(A))).

(3) ⇒ (4) Assume that there exists an integer n ≥ 0 such that [α, α]n ∈ B(Con((A)). Then λA(α) =
λA([α, α]

n) ∈ B(L(A)) (cf. Lemmas 3.1(5) and 4.2).
(4) ⇒ (2) Assume that α is a compact congruence such that λA(α) ∈ B(L(A)), so there exists an integer

n ≥ 0 such that [α, α]n ∈ B(Con(A)). Since λA(α) = λA([α, α]
n) and [α, α]n ∈ B(Con(A)) it follows that

λA|B(Con(A)) is surjective.

Definition 4.5. We say that the reticulation of A preserves the Boolean center if the equivalent conditions
from Proposition 4.4 fulfill.

Let us consider the following property:
(⋆) For all α, β ∈ K(A) and for any integer n ≥ 1 the exists an integerm ≥ 0 such that [[α, α]m, [β, β]m]] ⊆

[α, β]n.
If the commutator operation [·, ·] is associative, then it is obvious that the algebra A verifies the condition

(⋆).

Remark 4.6. [21] If the algebra A verifies the property (⋆) or is semiprime then the reticulation of A
preserves the Boolean center.

Lemma 4.7. If α ∈ B(Con(A)), then DA(α) is a clopen subset of Spec(A).

Proof. If α ∈ B(Con(A)), then α ∨ β = ∇A and [α, β] = ∆A. for some β ∈ B(Con(A)) ⊆ K(A), so
DA(α) ∪DA(β) = DA(α ∨ β) = DA(∇A) = Spec(A) and DA(α) ∩DA(β) = DA(αβ) = DA(∆A) = ∅.

If X is a topological space, then we denote by Clop(X) the Boolean algebra of clopen subsets of X.
According to the previous lemma one can consider the map DA|B(Con(A)) : B(Con(A)) → Clop(Spec(A)).

Lemma 4.8. DA|B(Con(A)) : B(Con(A)) → Clop(Spec(A)) is an injective Boolean morphism.

Proof. It is clear that DA|B(Con(A)) preserves the Boolean operations. In order to prove the injectivity of
DA|B(Con(A)), observe that for any α ∈ Con(A), DA(α) = Spec(A) if and only if α = ∇A (cf. Proposition
3.5 of [21]).

Theorem 4.9. If the reticulation of A preserves the Boolean center, then the map DA|B(Con(A)) : B(Con(A)) →
Clop(Spec(A)) is a Boolean isomorphism.
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Proof. According to Lemma 4.8, it suffices to check the surjectivity of DA|B(Con(A)). Let U be a clopen
subset of Spec(A). Then there exist θ, χ ∈ Con(A) such that U = VA(θ), VA(θ ∨ χ) = VA(θ) ∩ VA(χ) = ϕ
and VA([θ, χ]) = VA(θ) ∪ VA(χ) = Spec(A), so θ ∨ χ = ∇A and [θ, χ] ⊆ ρ(∆A). Since ∇A is compact
and K(A) is closed under joins there exist α, β ∈ K(A) such that α ⊆ θ, β ⊆ χ, α ∨ β = ∇A and
[α, β] ⊆ ρ(∆A). By Lemma 3.1, (1) and (2) it follows that λA(α) ∨ λA(β) = λA(α ∨ β) = λA(∇A) = 1 and
λA(α) ∧ λA(β) = λA([α, β]) = 0, hence λA(α), λA(β) ∈ B(Con(A)).

In accordance with the hypothesis that the reticulation of A preserves the Boolean center, from λA(α),
λA(β) ∈ B(Con(A)) it follows that [α, α]n, [β, β]n ∈ B(Con(A)), for some integer n ≥ 0. By applying
Lemma 2.4(3) we have the equality [α, α]n ∨ [β, β]n = ∇A, hence we obtain

VA([α, α]
n) ∩ VA([β, β]n) = VA([α, α]

n) ∨ [β, β]n) = VA(∇A) = ϕ.

We observe that we have the following inclusions [[α, α]n, [β, β]n] ⊆ [α, β] ⊆ ρ(∆A), therefore

Spec(A) = VA(ρ(∆A) ⊆ VA([[α, α]
n, [β, β]n]) = VA([α, α]

n) ∪ VA([β, β]n),

so VA([α, α]n) ∪ VA([β, β]n) = Spec(A).
From [α, α]n ⊆ α ⊆ θ and [β, β]n ⊆ β ⊆ χ we get VA([α, α]n) ⊆ VA(θ) and VA([β, β]

n) ⊆ VA(χ),
therefore U = VA(θ) = VA([α, α]

n) = DA([β, β]
n) (because [β, β]n is the complement of [α, α]n). Then we

get the surjectivity of DA|B(Con(A)).

If it is not danger of confusion we shall write DA instead of DA|B(Con(A)).

Remark 4.10. The previous theorem is a generalization to universal algebra of a classical result in ring
theory: the map e 7→ DA(e) is an isomorphism between the Boolean algebra of idempotents of a commutative
ring R and the Boolean algebra of a clopen subsets of Spec(R) (see [30], 00EE ).

The converse of Theorem 4.9 is also true.

Theorem 4.11. If the map DA|B(Con(A)) : B(Con(A)) → Clop(Spec(A)) is a Boolean isomorphism, then
the reticulation of A preserves the Boolean center.

Proof. Assume that α ∈ K(A) and λA(α) ∈ B(L(A)), so there exists β ∈ K(A) such that λA(α)∨λA(β) = 1
and λA(α) ∧ λA(β) = 0. Thus λA(α ∨ β) = 1 and λA([α, β]) = 0, hence α ∨ β = 1 and [α, β] ⊆ ρ(∆A).

It follows that DA(α) ∪DA(β) = Spec(A) and DA(α) ∩DA(β) = ∅, hence DA(α) = VA(β) is a clopen
subset of Spec(A). Since DA|B(Con(A)) is a bijection there exists γ ∈ B(Con(A)) such that DA(α) = DA(γ),
so λA(α) = λA(γ). By using Lemma 3.1(8) we get γ ⊆ [α, α]n ⊆ γ, for some integer n ≥ 0, so [α, α]n = γ ∈
B(Con(A)). By the condition (3) of Proposition 4.4, the reticulation of A preserves the Boolean center.

5 Congruence Boolean lifting property
The lifting idempotent property (LIP ) was studied in [37] in relationship with the clean and the

exchange rings. Recently, similar lifting properties were studied for other algebraic structures: bounded
distributive lattices [12], commutative residuated lattices [19], universal algebras [20], etc. For example,
in [20] we introduced the notion of Congruence Boolean Lifting Property (CBLP ) for the semidegenerate
congruence modular algebras (see [2]). CBLP generalizes LIP , as well as all the Boolean lifting properties
existing in literature.

In this section we continue the investigations of [20] on congruences and algebras with CBLP . Our
results on congruences with CBLP generalise to some universal algebras the main theorems proven by A.
Tarizadeh and P.K. Sharma in [39] for lifting idempotents modulo an ideal.

Let A be an algebra in a variety V, θ a congruence of A and pθ : A → A/θ the canonical surjec-
tive morphism associated with the congruence θ. According to Section 2, one can consider the map
p•θ : Con(A) → Con(A/θ) associated with pθ. By Remark 5.19 of [20], we have pθ(α) = (α ∨ θ)/θ for
each α ∈ Con(A). In virtue of Corollary 5.17 of [20], the map p•θ : Con(A) → Con(A/θ) induces a Boolean
morphism B(p•θ) : B(Con(A)) → B(Con(A/θ)).
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Definition 5.1. [20] We shall say that a congruence θ of the algebra A fulfills the Congruence Boolean
Lifting Property (CBLP ) if the Boolean morphism B(p•θ) : B(Con(A)) → B(Con(A/θ)) is surjective. The
algebra A fulfills CBLP if each congruence of A has CBLP .

In other words, θ ∈ Con(A) has CBLP if and only if for any β ∈ B(Con(A/θ)) there exists α ∈
B(Con(A)) such that (α ∨ θ)/θ = β.

We observe that a commutative ring R has CBLP iff R has LIP iff R is a clean ring (the last equivalence
is a Nicholson theorem from [37]).

Let A be an algebra in a fixed semidegenerate congruence modular variety V such that the set K(A) of
finitely generated congruences of A is closed under the commutator operation and let θ be a congruence of
A. We shall denote [θ)A = {χ ∈ Con(A)|θ ⊆ χ} and Xθ = VA(θ) = {ϕ ∈ Spec(A)|θ ⊆ ϕ}. By [11] it is
well-known that any congruence of A/θ has the form χ/θ = {(x/θ, y/θ)|(x, y) ∈ χ}, for some congruence
χ ∈ [θ)A and the map sθ : Con(A/θ) → [θ)A, defined by sθ(χ/θ) = χ, is a lattice isomorphism. Thus for all
χ, ε ∈ [θ)A, χ/θ = χ/θ if and only if χ = ε. We also know that the map tθ = sθ|Spec(A/θ) : Spec(A/θ) → Xθ

is a homeomorphism.
We remark that (DA(χ) ∩ [θ)A)χ∈[θ)A is a basis of open sets for the topology of Xθ and the map

tθ = sθ|Spec(A/θ) : Spec(A/θ) → Xθ is a homeomorphism. It is clear from the Stone duality [11] that
the homeomorphism tθ induces the Boolean isomorphism t∗θ : Clop(Spec(A/θ)) → Clop(Xθ), given by
t∗θ(U) = tθ[U ] = {tθ(ϵ)|ϵ ∈ U}.

For the rest of the section we will suppose that for any algebra A of the variety V, the reticulation of A
preserves the Boolean center.

According to Theorem 4.9, one can consider the Boolean isomorphism

DA/θ : B(Con(A/θ)) → Clop(Spec(A/θ)).

Thus vθ = t∗θ ◦DA/θ : B(Con(A/θ)) → Clop(Xθ) is a Boolean isomorphism.

Lemma 5.2. For any congruence χ of A such that θ ⊆ χ and χ/θ ∈ B(Con(A/θ)) we have vθ(χ/θ) =
DA(χ) ∩ [θ)A.

Proof. Assume that χ ∈ Con(A), θ ⊆ χ and χ/θ ∈ B(Con(A/θ)). Then the following equalities hold:

vθ(χ/θ) = (t∗θ ◦DA/θ)(χ/θ) = t∗θ({ϕ/θ)|ϕ ∈ Spec(A) ∩ [θ)A, χ 6⊆ ϕ}
= {tθ(ϕ/θ)|ϕ ∈ DA(χ) ∩ [θ)A} = DA(χ) ∩ [θ)A.

We remark that Xθ = Xρ(θ) so Clop(Xθ) = Clop(Xρ(θ)). Since vθ and vρ(θ) are Boolean isomorphisms
the following lemma holds:

Lemma 5.3. There exists a Boolean isomorphism ω : B(Con(A/ρ(θ))) → B(Con(A/θ)) such that the
following diagram is commutative.

B(Con(A/ρ(θ)))
-vρ(θ)

Clop(Xρ(θ))

?

ω

B(Con(A/θ))
-vθ

Clop(Xθ)
?

id

where id is the identity map.

Theorem 5.4. For any congruence θ ∈ Con(A) the following are equivalent:

(1) θ has CBLP ;

(2) ρ(θ) has CBLP .
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Proof. (1) ⇒ (2) Assume that θ has CBLP . Let χ be a congruence of A such that ρ(θ) ⊆ χ and χ/ρ(θ) ∈
B(Con(A/θ)), hence ω(χ/ρ(θ)) = ε/θ, for some congruence ε such that θ ⊆ ε. According to the commutative
diagram of Lemma 5.3 the following equalities hold:

DA(χ) ∩ [ρ(θ))A = vρ(θ)(χ/ρ(θ)) = vθ(ω(χ/ρ(θ))) = vθ(ε/θ) = DA(ε) ∩ [θ)A.

Since ω is a Boolean isomorphism and χ/ρ(θ) ∈ B(Con(A/ρ(θ))) we have ε/θ = ω(χ/ρ(θ)) ∈ B(Con(A/θ)).
By applying the hypothesis that θ has CBLP there exists α ∈ B(Con(A)) such that ε/χ = p•θ(α) = (α∨θ)/θ,
therefore ε = α ∨ θ.

We want to show that p•ρ(θ)(α) = χ/ρ(θ), i.e. (α ∨ ρ(θ))/ρ(θ) = χ/ρ(θ). Firstly we shall prove the
equality DA(α ∨ ρ(θ)) ∩ [ρ(θ))A = DA(χ) ∩ [ρ(θ))A. Assume that ϕ is a prime congruence of A, so it easy
to see that the following equivalence holds: α ∨ ρ(θ) 6⊆ ϕ and ρ(θ) ⊆ ϕ if and only if α ∨ θ 6⊆ ϕ and θ ⊆ ϕ.
Thus we have the following equality: DA(α ∨ ρ(θ)) ∩ [ρ(θ))A = DA(α ∨ θ) ∩ [θ)A).

On the other hand,

DA(α ∨ θ) ∩ [θ)A) = DA(ε) ∩ [θ)A) = DA(χ) ∩ [ρ(θ))A,

so DA(α ∨ ρ(θ)) ∩ [ρ(θ))A = DA(χ) ∩ [ρ(θ))A. This last equality can be written under the form vρ(θ)((α ∨
ρ(θ))/ρ(θ)) = vρ(θ)(χ/ρ(θ)). Since vρ(θ) is a Boolean isomorphism and (α∨ρ(θ))/ρ(θ), χ/ρ(θ) ∈ B(Con(A/ρ(θ)))

we get (α ∨ ρ(θ))/ρ(θ) = χ/ρ(θ). Then p•ρ(θ)(α) = χ/ρ(θ), so we conclude that ρ(θ) has CBLP .
(2) ⇒ (1) Assume now that ρ(θ) has CBLP . Let ε be a congruence of A such that θ ⊆ ε and

ε/θ ∈ B(Con(A/θ)). Since ω is a Boolean isomorphism and ε/θ ∈ B(Con(A/θ)) there exists χ ∈ Con(A)
such that ρ(θ) ⊆ χ such that χ/ρ(θ) ∈ B(Con(A/ρ(θ))) and ω(χ/ρ(θ)) = ε/θ. As in the proof of implication
(1) ⇒ (2), by applying Lemma 5.3 one gets the equality DA(χ) ∩ [θ)A = DA(ε) ∩ [θ)A. Since ρ(θ) has
CBLP and χ/ρ(θ) ∈ B(Con(A/ρ(θ))) there exists α ∈ B(Con(A)) such that χ/ρ(θ) = (α ∨ ρ(θ))/ρ(θ),
hence χ = α ∨ ρ(θ).

For any ϕ ∈ Spec(A) we have α ∨ θ ⊆ ϕ if and only if α ∨ ρ(θ) ⊆ ϕ. Thus

DA(α ∨ θ) ∩ [θ)A = DA(α ∨ ρ(θ)) ∩ [θ)A = DA(χ) ∩ [θ)A = DA(ε) ∩ [θ)A,

so vθ((α ∨ θ)/θ) = DA(α ∨ θ) ∩ [θ)A = DA(ε) ∩ [θ)A = vθ(ε/θ). Since vθ is a Boolean isomorphism and
(α ∨ θ)/θ, ε/θ ∈ B(Con(A/θ)) it follows that p•θ(α) = (α ∨ θ)/θ = ε/θ. Then p•θ is surjective, so θ has
CBLP .

The previous theorem generalizes Proposition 3.1 of [39]. We observe that the proof of Theorem 5.4
is based on Theorem 4.9, which is a topological result. In what follows we shall present a short purely
algebraic of Theorem 5.4 by using a result of [20] concerning the way in which the reticulation preserves
the Boolean lifting properties.

Let L be a bounded distributive lattice. Following [12] we say that an ideal I of L has Id−BLP if for
any y ∈ B(L/I) there exists x ∈ B(L) such that x/I = y. The lattice L has Id−BLP if any ideal of L has
Id−BLP .

Proposition 5.5. Assume that A is an algebra of V and θ is a congruence of A. Then θ has CBLP if and
only if the ideal θ∗ of the lattice L(A) has Id − BLP . The algebra A has CBLP if and only if the lattice
L(A) has Id−BLP .

Proof. By hypothesis, for any algebra A of variety V, the reticulation of A preserves the Boolean center, so
one can apply Lemma 5.25 of [20].

In particular, a commutative ring R is a clean ring if and only if the lattice L(R) has Id−BLP .
Second proof of Theorem 5.4. According to Lemma 3.3(3) we have θ∗ = (ρ(θ))∗. By applying Proposition

5.5 the following equivalences hold: the congruence θ has CBLP iff the ideal θ∗ of the lattice L(A) has
Id−BLP iff the ideal (ρ(θ))∗ of the lattice L(A) has Id−BLP iff the congruence ρ(θ) has CBLP .

Corollary 5.6. Let I be an ideal of the lattice L(A). Then I has Id−BLP if and only if the congruence
I∗ of A has CBLP .
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Proof. Recall from Lemma 3.3(2) that I = (I∗)
∗, so by applying Proposition 5.5 the following equivalences

hold: I has Id−BLP iff (I∗)
∗ has Id−BLP iff I∗ has CBLP .

Corollary 5.7. If θ and χ are two congruences of A such that ρ(θ) = ρ(χ), then θ has CBLP if and only
if χ has CBLP .
Proof. By using Theorem 5.4 we have the following equivalences: θ has CBLP iff ρ(θ) has CBLP iff ρ(χ)
has CBLP iff χ has CBLP .

Corollary 5.8. If θ and χ are two congruences of A such that λA(θ) = λA(χ), then θ has CBLP if and
only if χ has CBLP .
Corollary 5.9. Any congruence θ of A contained in ρ(∆A) has CBLP .
Proof. If the congruence θ of A is contained in ρ(∆A), then ρ(θ) = ρ(∆A). Since ∆A has CBLP , by
applying Corollary 5.7 it follows that θ has CBLP .

Lemma 5.10. For all congruences θ, ε ∈ Con(A) such θ ⊆ ε the following hold:
(1) In A/θ we have (ε/θ)⊥ = (ε→ θ)/θ;

(2) ε/θ ∈ B(Con(A/θ)) if and only if ε ∨ (ε→ θ) = ∇A.
Proof. (1) The equality (ε/θ)⊥ = (ε→ θ)/θ was proven in [23].

(2) We know that ε/θ ∈ B(Con(A/θ) iff ε/θ ∨ (ε/θ)⊥ = ∇A/θ, hence by using (1), it follows that the
following equivalences hold: ε/θ ∈ B(Con(A/θ)) iff ε/θ ∨ (ε → θ)/θ = ∇A/θ iff (ε ∨ (ε → θ))/θ = ∇A/θ iff
ε ∨ (ε→ θ) = ∇A.

Remark 5.11. Assume that θ, ε ∈ Con(A) and θ ⊆ ε. By Lemma 5.10 and the commutator property (2.3)
the following equalities hold: ([ε, ε → θ]) ∨ θ)/θ = ([ε/θ, (ε → θ)/θ] = [ε/θ, (ε/θ)⊥] = ∆A/θ = θ/θ, hence
[ε, ε→ θ] ∨ θ = θ, therefore [ε, ε→ θ] ⊆ θ.
Theorem 5.12. Assume that θ, χ are two congruences of A such that θ ⊆ χ and Max(A) ∩ [θ)A =
Max(A) ∩ [χ)A. If χ has CBLP , then θ has CBLP .
Proof. Assume that χ has CBLP . Let ε be a congruence of A such that θ ⊆ ε and ε/θ ∈ B(Con(A/θ)),
hence ε ∨ (ε → θ) = ∇A (by Lemma 5.10(2)). We observe that θ ⊆ χ implies ε → θ ⊆ ε → χ, so
∇A = ε∨ (ε→ θ) ⊆ ε∨ (ε→ χ), hence ε∨ (ε→ χ) = ∇A. We know that χ ⊆ ε→ χ, so the following hold:

ε ∨ χ ∨ ((ε ∨ χ) → χ) = ε ∨ χ ∨ ((ε→ χ) ∩ (χ→ χ)) = ε ∨ χ ∨ (ε→ χ) = ε ∨ (ε→ χ) = ∇A.

Applying again by Lemma 5.10(2) we get (ε ∨ χ)/χ ∈ B(Con(A/χ)). Recall that χ has CBLP , so there
exists α ∈ B(Con(A)) such that (α ∨ χ)/χ = (ε ∨ χ)/χ, hence α ∨ χ = ε ∨ χ.

Now, we shall prove that VA(α ∨ θ) = VA(ε). In order to verify the inclusion VA(α ∨ θ) ⊆ VA(ε), let us
assume that ϕ ∈ VA(α∨θ), so ϕ ∈ Spec(A) and α∨θ ⊆ ϕ. Let us take a maximal congruence ψ of A such that
ϕ ⊆ ψ, so α ⊆ ψ and θ ⊆ ψ. It follows that ψ ∈ Max(A) ∩ [θ)A = Max(A) ∩ [χ)A, therefore χ ⊆ ψ. Then
ε ∨ χ = α ∨ χ ⊆ ψ, so ε ⊆ ψ. Assume by absurdum that ε 6⊆ ϕ, hence ε→ θ ⊆ ϕ (because by Remark 5.11
we have [ε, ε → θ] ⊆ θ ⊆ ϕ). From ε ⊆ ψ and ε → θ ⊆ ϕ ⊆ ψ we get ∇A = ε ∨ (ε → θ) ⊆ ψ, contradicting
that ψ ∈ Max(A). It follows that ε ⊆ ϕ, i.e. ϕ ∈ VA(ε). Then the desired inclusion VA(α ∨ θ) ⊆ VA(ε) is
proven.

In order to show that VA(ε) ⊆ VA(α ∨ θ), let us suppose that ϕ ∈ VA(ε), i.e. ϕ ∈ Spec(A) and ε ⊆ ϕ.
Let ψ a maximal congruence of A such that ϕ ⊆ ψ, so θ ⊆ ε ⊆ ϕ ⊆ ψ. It follows that ψ ∈Max(A)∩ [θ)A =
Max(A) ∩ [χ)A, hence χ ⊆ ψ. Thus we obtain α ∨ χ = ε ∨ χ ⊆ ψ. Assume by absurdum that α ∨ θ 6⊆ ϕ,
so α 6⊆ ϕ (because θ ⊆ ε ⊆ ϕ). Since ϕ ∈ Spec(A) and α ∈ B(Con(A)), α 6⊆ ϕ implies ¬α ⊆ ϕ ⊆ ψ, so
∇A = α∨¬α ⊆ ϕ, contradicting that ψ ∈Max(A). Thus α∨ θ ⊆ ϕ, hence ϕ ∈ VA(α∨ θ) and the inclusion
VA(ε) ⊆ VA(α ∨ θ) is obtained.

From VA(α ∨ θ) = VA(ε) we get DA(α ∨ θ) = DA(ε), therefore

vθ((α ∨ θ)/θ) = DA(α ∨ θ) ∩ [θ)A = DA(ε) ∩ [θ)A = vθ(ε/θ).

Since vθ is injective and (α ∨ θ)/θ, ε/θ ∈ B(Con(A/θ)), we get p•θ(α) = (α ∨ θ)/θ = ε/θ. Then p•θ is
surjective, so θ has CBLP .
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Corollary 5.13. Let θ be a congruence of A such that θ ⊆ Rad(A). If Rad(A) has CBLP , then θ has
CBLP .

Proof. If θ is a congruence of A such that θ ⊆ Rad(A), then Max(A) ∩ [θ)A = Max(A) ∩ [Rad(A))A =
Max(A). Thus the corollary follows by applying Theorem 5.12.

In general Rad(A) =
∩
Max(A) does not verify CBLP (see Example 3.10 of [39]). In this section we

characterize the algebras A for which Rad(A) has CBLP . When A is a commutative ring we obtain as
particular cases some results proved in Section 3 of [39].

The following theorem shows an interest in itself, but we shall use it as a tool in the proofs of this section.

Theorem 5.14. If U is a subset of Max(A), then the following are equivalent

(1) U is a clopen subset of Max(A);

(2) There exist α, β ∈ K(A) such that α ∨ β = ∇A, [α, β] ⊆ Rad(A) and U =Max(A) ∩DA(α).

Proof. (1) ⇒ (2) Assume that U ∈ Clp(Max(A)). We know from Remark 3.7 that Max(A) is a compact
set and U is a closed subset of Max(A), so U is itself compact, therefore there exist α1, · · · , αn ∈ K(A)
such that U =

∪n
i=1(Max(A) ∩DA(αi)). By a similar argument, there exist β1, · · · , βm ∈ K(A) such that

Max(A)− U =
∪m

j=1(Max(A) ∩DA(βj)).
For all i = 1, · · · , n and j = 1, · · · ,m we have Max(A)∩DA([αi, βj ]) =Max(A)∩DA(αi)∩DA(βj) = ∅,

hence ϕ ∈ Max(A) implies ϕ 6∈ DA([αi, βj ]), i.e. [αi, βj ] ⊆ ϕ. It follows that [αi, βj ] ⊆ Rad(A), for all
i = 1, · · · , n and j = 1, · · · ,m. Denoting α =

∨n
i=1 αi and β =

∨m
j=1 βj we get α, β ∈ K(A),

U =Max(A) ∩ (

n∪
i=1

DA(αi)) =Max(A) ∩DA(α),

Max(A) = (Max(A)∩DA(α))∪(Max(A)∩DA(β)) =Max(A)∩(DA(α)∪ DA(β)) =Max(A)∩DA(α∨β),

and [α, β] =
∨
{[αi, βj ]|i = 1, · · · , n; j = 1, · · · ,m} ⊆ Rad(A).

If α ∨ β 6= ∇A, then α ∨ β ⊆ ϕ for some ϕ ∈ Max(A), hence ϕ 6∈ DA(α ∨ β), contradicting Max(A) =
Max(A) ∩DA(α ∨ β). Then α ∨ β = ∇A, hence the property (2) is verified.

(2) ⇒ (1) Assume that there exist α, β ∈ K(A) such that α ∨ β = ∇A, [α, β] ⊆ Rad(A) and U =
Max(A)∩DA(α). In order to prove that U is a clopen subset of Max(A) it suffices to show that Max(a)∩
DA(α) =Max(A) ∩ VA(β).

If ϕ ∈ Max(A) ∩ DA(α), then α 6⊆ ϕ, hence β ⊆ ϕ (because ϕ is a prime congruence) and [α, β] ⊆
Rad(A) ⊆ ϕ). Thus ϕ ∈Max(A) ∩ VA(β), therefore we get that Max(a) ∩DA(α) ⊆Max(A) ∩ VA(β).

Conversely, assume that ϕ ∈Max(A)∩VA(β), hence β ⊆ ϕ ∈Max(A). If α ⊆ ϕ, then ∇A = α∨β ⊆ ϕ,
contradicting that ϕ is a maximal congruence. Then α 6⊆ ϕ, so ϕ ∈Max(A)∩DA(α), obtaining the inclusion
Max(A) ∩ VA(β) ⊆Max(A) ∩DA(α). Thus the equality Max(A) ∩DA(α) =Max(A) ∩ VA(β) follows, so
U is a clopen subset of Max(A).

Let α be a congruence of A that fulfills the properties Rad(A) ⊆ α and α/Rad(A) ∈ B(Con(A/Rad(A))).
Then there exists β ∈ Con(A) such that the following hold: Rad(A) ⊆ β,

(α ∨ β)/Rad(A) = α/Rad(A) ∨ β/Rad(A) = ∇A/Rad(A),

and
([α, β] ∨Rad(A))/Rad(A) = [α/Rad(A), β/Rad(A)] = ∆Rad(A).

Thus we obtain α ∨ β = ∇A and [α, β] ⊂ Rad(A). By using Theorem 6.1 it results that Max(A) ∩DA(α)
is a clopen subset of Max(A), so one can define a map f : B(Con(A/Rad(A)) → Clop(Max(A)) by setting
f(α/Rad(A)) =Max(A) ∩DA(α).

Proposition 5.15. The map f : B(Con(A/Rad(A)) → Clop(Max(A)) is a Boolean isomorphism.
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Proof. Let α, β be two congruences ofA such thatRad(A) ⊆ α∩β and α/Rad(A), β/Rad(A) ∈ B(Con(A/Rad(A))).
Then the following equalities hold:

f(α/Rad(A) ∨ β/Rad(A)) = f((α ∨ β)/Rad(A)) =Max(A) ∩DA(α ∨ β)
= (Max(A) ∩DA(α)) ∪ (Max(A) ∩DA(β)

= f(α/Rad(A)) ∪ f(β/Rad(A)).

Similarly, we have f(α/Rad(A)∩β/Rad(A)) = f(α/Rad(A))∩f(β/Rad(A)), so f is a Boolean morphism.
If Max(A) ∩DA(α) = ∅, then α = Rad(A), so α/Rad(A) = ∆A/Rad(A). We conclude that f is an injective
map.

In order to establish the surjectivity of f let us suppose that U ∈ Clop(Max(A)). By using Theorem
5.14, there exist α, β ∈ K(A) such that α∨ β = ∇A, [α, β] ⊆ Rad(A) and U =Max(A)∩DA(α). Then the
following equalities hold:

(α ∨Rad(A))/Rad(A) ∨ (β ∨Rad(A))/Rad(A) = ∇A/Rad(A),

[(α ∨Rad(A))/Rad(A), (β ∨Rad(A))/Rad(A)] = ([α, β] ∨Rad(A))/Rad(A) = ∆A/Rad(A).

Let us denote γ = α ∨ Rad(A), δ = β ∨ Rad(A), hence, by using the previous equalities we obtain
γ/Rad(A), δ/Rad(A) ∈ B(Con(A/Rad(A))) and

Max(A) ∩DA(γ) =Max(A) ∩ (DA(α) ∪DA(Rad(A)) =Max(A) ∩DA(α),

(because DA(Rad(A) = ∅). It follows that f(γ/Rad(A) = U , so f is surjective.

Lemma 5.16. The Boolean morphism B(p•Rad(A)) : B(Con(A)) → B(Con(A/Rad(A))) is injective.

Proof. Assume that α ∈ B(Con(A)) and p•Rad(A)(α) = ∆A/Rad(A), so we have (α ∨ Rad(A))/Rad(A) =

∆A/Rad(A). It follows that α ⊆ Rad(A). If α 6= ∆A then ¬α 6= ∇A, so ¬α ⊆ ϕ for some ϕ ∈ Max(A). On
the other hand we have α ⊆ Rad(A) ⊆ ϕ, so ∇A = α ∨ ¬α ⊆ ϕ, contradicting that ϕ ∈ Max(A). We get
α = ∆A, hence B(p•Rad(A)) is injective.

Let us consider the map g : B(Con(A)) → Clop(Max(A)), defined by g(α) =Max(A)∩DA(α), for any
α ∈ B(Con(A)). It is easy to see that g is a Boolean morphism.

Theorem 5.17. Rad(A) has CBLP if and only if g : B(Con(A)) → Clop(Max(A)) is a Boolean isomor-
phism.

Proof. For any α ∈ B(Con(A)) the following equalities hold:

f(B(p•Rad(A))(α)) = f((α ∨Rad(A))/Rad(A)) =Max(A) ∩DA(α ∨Rad(A)) =Max(A) ∩DA(α) = g(α).

Then the following diagram is commutative in the category of Boolean algebras:

B(Con(A))

B(pRad(A))-
B(Con(A/θ))

HHHHHjg �����*

f

Max(A)

According to Proposition 5.15 f is a Boolean isomorphism, hence, by using Lemma 5.16 and the previous
commutative diagram, it follows that g is an injective Boolean morphism. Thus we have the following
equivalences: Rad(A) has CBLP iff p•Rad(A) is surjective iff p•Rad(A) is a Boolean isomorphism iff g is a
Boolean isomorphism.

Remark 5.18. If we apply Theorem 5.17 whenever A is a commutative ring, then we obtain Corollary 3.13
of [39].
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Recall from [21] that the algebra A is hyperarchimedean if for all α ∈ Con(A) there exists n ≥ 1 such
that [α, α]n ∈ B(Con(A)).
Proposition 5.19. Any congruence θ of a hyperarchimedean algebra A has CBLP .
Proof. Let θ be an arbitrary congruence of A. From Theorem 7.10 of [21] we know that A is hyperar-
chimedean if and only if the reticulation L(A) of A is a Boolean algebra. It is obvious that any ideal of a
Boolean ring is a lifting ideal, so θ∗ ia a lifting ideal of L(A) = B(L(A)) (i.e. θ∗ has Id−BLP ). Then, by
applying Proposition 5.4, it follows that the congruence θ has CBLP .

6 Caracterization of congruences with CBLP

In this section we shall prove a characterization theorem for congruences of algebras that have CBLP .
As a particular case one obtains the main part of Theorem 3.14 of [39], a result that characterizes the
lifting ideals in commutative rings. Before proving this characterization theorem we need some preliminary
definitions and results.

Let us consider a semidegenerate congruence modular variety V such that for any algebra A ∈ V , the
set K(A) of finitely generated congruences of A is closed under the commutator operation.

Let R be a commutative ring and B(R) the Boolean algebra of its idempotents. For an ideal I of R
denote by I⋄ the ideal of R generated by I ∩ B(R). If L is a bounded distributive lattice and I an ideal
of L then I⋄ will be the ideal of L generated by I ∩ B(L) (I⋄ = [I ∩ B(L)). A similar construction can be
done for any algebra A ∈ V : if θ is a congruence of A then θ⋄ =

∨
{α ∈ B(Con(A))|α ⊆ θ}.

For the rest of the section we will suppose that for any algebra A of the variety V, the reticulation of A
preserves the Boolean center. We fix an algebra A ∈ V .

The following proposition emphasizes the way in which the reticulation preserves the previous construc-
tion θ⋄.
Proposition 6.1. If θ ∈ Con(A), then θ∗⋄ = θ⋄∗.
Proof. Firstly we shall prove that θ⋄∗ ⊆ θ∗⋄. Assume that x ∈ θ⋄∗, so x = λA(α), for some α ∈ K(A) such
that α ⊆ θ⋄. Since α is a compact congruence and θ⋄ =

∨
{α ∈ B(Con(A))|α ⊆ θ} we get α ⊆ γ ⊆ θ, for

some γ ∈ B(Con(A)). Thus λA(α) ≤ λA(γ) and λA(γ) ∈ B(L(A)) ∩ θ∗, hence it follows that x = λA(α) ∈
[B(L(A)) ∩ θ∗) = θ∗⋄.

In order to establish the converse inclusion θ∗⋄ ⊆ θ⋄∗ it suffices to check that B(L(A)) ∩ θ∗ ⊆ θ⋄∗.
Assume that x ∈ B(L(A))∩ θ∗, so x = λA(α) for some compact congruence α ⊆ θ. Since the reticulation of
A preserves the Boolean center, λA(α ∈ B(L(A)) implies [α, α]n ∈ B(Con(A)), for some integer n ≥ 0 (see
the condition (3) of Proposition 4.4). We observe that [α, α]n ≤ θ and [α, α]n ∈ B(Con(A)) implies that
[α, α]n ⊆ θ⋄, so x = λA([α, α]

n) ∈ θ⋄∗.

Let us remind the following result proved by Hochster in [26]: for any bounded distributive lattice L
there exists a commutative ring R whose reticulation L(R) is isomorphic with L. By using the Hochster
theorem, it follows that for the algebra A there exists a commutative ring R whose reticulation L(R) is
isomorphic to the lattice L(A) (we can identify the isomorphic lattices L(R) and L(A)). The reticulation
properties presented in Section 3 provide a strong connection between the congruences of A and the ideals
of the ring R, allowing us to export some results from rings to algebras. We will illustrate this thesis in
various proofs of this section

Let us consider θ ∈ Con(A) and ϕ ∈ Max(A), so θ∗ is an ideal of the lattice L(A) and ϕ∗ is maximal
ideal of L(A). By using twice Proposition 3.4, there exist an ideal of R and a maximal ideal M of R such
that I∗ = θ∗ and M∗ = ϕ∗ (we identify the ring ideals I and M with their ring congruences). The cardinal
number of a set Ω will be denoted by |Ω|.
Lemma 6.2. |B(Con(A/(θ ∨ ϕ⋄)))| = |B(Con(R/(I ∨M⋄)))|.
Proof. By hypothesis, the reticulation of any algebra in V preserves the Boolean center. In particular, the
reticulation of A/(θ ∨ ϕ⋄) preserves the Boolean center. Therefore by using Theorem 4.4(3), Lemma 3.2(2)
and Proposition 7.6 of [21] one gets the following Boolean isomorphisms:

B(Con(A/(θ ∨ ϕ⋄))) ' B(L(A/(θ ∨ ϕ⋄))) ' B(L(A)/(θ ∨ ϕ⋄)∗) ' B(L(A)/(θ∗ ∨ ϕ⋄∗)),
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and

B(Con(R/(I ∨M⋄))) ' B(L(R/(I ∨M⋄))) ' B(L(R)/(I ∨M⋄)∗) ' B(L(R)/(I∗ ∨M⋄∗)).

By Proposition 6.1 we have ϕ⋄∗ = ϕ∗⋄ = M∗⋄ = M⋄∗, hence the Boolean algebras B(Con(A/(θ ∨ ϕ⋄)))
and B(Con(R/(I ∨M⋄))) are isomorphic, so they have the same cardinal number.

Recall from [4] that two ideals I, J of a commutative ring R are said to be coprime if I ∨J = I+J = R.
Similarly, two congruences θ, χ of the algebra A are coprime if θ ∨ χ = ∇A. By Lemma 2.3(1), if the
congruences θ, χ are coprime then [θ, χ] = θ ∩ χ.

Theorem 6.3. For any congruence θ of the algebra A the following are equivalent:

(1) θ has CBLP ;

(2) For all coprime congruences ϕ, ψ of the algebra A such that [ϕ, ψ] ⊆ θ there exists α ∈ B(Con(A))
such that α ⊆ θ ∨ ϕ and ¬α ⊆ θ ∨ ψ;

(3) For all coprime congruences ϕ, ψ of the algebra A such that [ϕ, ψ] = θ there exists α ∈ B(Con(A))
such that α ⊆ θ ∨ ϕ and ¬α ⊆ θ ∨ ψ;

(4) If ϕ is a maximal congruence of A then |B(Con(A/(θ ∨ ϕ⋄)))| ≤ 2.

Proof. (1) ⇒ (2) Assume that ϕ, ψ are coprime congruences of the algebra A such that [ϕ, ψ] ⊆ θ, so
(ϕ ∨ θ)/θ ∨ (ψ ∨ θ)/θ = ∇A/θ and [(ϕ ∨ θ)/θ, (ψ ∨ θ)/θ] = ([ϕ, ψ] ∨ θ)/θ = θ/θ = ∆A/θ, therefore (ϕ ∨
θ)/θ, (ψ ∨ θ)/θ ∈ B(Con(A/θ)) and ¬((ϕ ∨ θ)/θ) = (ψ ∨ θ)/θ. By hypothesis, θ has CBLP , i.e. the map
B(p•θ) : B(Con(A)) → B(Con(A/θ))) is surjective, so there exist α ∈ B(Con(A)) such that (ϕ ∨ θ)/θ =
p•θ(α) = (α ∨ θ)/θ. It follows that ϕ ∨ θ = α ∨ θ.

On the other hand, B(p•θ) is a Boolean morphism and ¬α ∈ B(Con(A)), hence the following equalities
hold:

(¬α ∨ θ)/θ = p•θ(¬α) = ¬p•θ(α) = ¬((α ∨ θ)/θ) = ¬((ϕ ∨ θ)/θ) = (ψ ∨ θ)/θ,

hence ¬α ∨ θ = ψ ∨ θ, therefore ¬α ⊆ θ ∨ ψ.
(2) ⇒ (3) Obviously.
(3) ⇒ (1) In order to show that B(p•θ) is a surjective map, let us consider χ ∈ Con(A) such that θ ⊆ χ

and χ/θ ∈ B(Con(A/θ)). Thus there exists ε ∈ Con(A) such that θ ⊆ ε and ¬(χ/θ) = ε/θ. It follows that
(χ ∨ ε)/θ = χ/θ ∨ ε/θ = ∇A/θ, so χ ∨ ε = ∇A, i.e. χ and ε are coprime.

From (χ∩ε)/θ = (χ/θ∩ε)/θ = ∆A/θ we get χ∩ε = θ. Since χ and ε are coprime we have [χ, ε] = χ∩ε = θ.
Then one can apply the hypothesis (3), so there exists α ∈ B(Con(A)) such that α ⊆ χ ∨ θ = χ and
¬α ⊆ ε ∨ θ = ε.

From α ⊆ χ we get p•θ(α) = (α ∨ θ)/θ ⊆ χ/θ. On the other hand, the following implications hold:

¬α ⊆ ε⇒ p•θ(¬α) ⊆ p•θ(ε) ⇒ ¬p•θ(α) ⊆ ε/θ ⇒ ¬ε/θ ⊆ p•θ(α) ⇒ χ/α ⊆ p•θ(α).

It follows that p•θ(α) = χ/θ and α ∈ B(Con(A)), so p•θ is surjective. Then θ has CBLP .
(1) ⇔ (4) By using the Hochster theorem [26], one can find a commutative ring R such that the

reticulation L(A) of the algebra A and the reticulation L(R) of the ring R are isomorphic. As usual, we
can assume that L(A) and L(R) coincide.

We know that θ∗ is an ideal of L(A) so one can take an ideal I of the ring R such that θ∗ = I∗ (we
identify the ideals of R with their congruences). According to Remark 3.7, for any maximal congruence ϕ
of A we can find a maximal ideal M of R such that ϕ∗ =M∗.

By two applications of Proposition 5.5 it follows that θ has CBLP if and only if I is a lifting ideal of
R. Therefore by using Theorem 3.14 of [39] and Lemma 6.2, the following properties are equivalent:

• θ has CBLP ;
• I is a lifting ideal of R;
• If M is a maximal ideal of R, then R/(I ∨M⋄) has no nontrivial idempotent;
• If ϕ is a maximal congruence of A, then |B(Con(A/(θ ∨ ϕ⋄)))| ≤ 2.
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Recall from [1] that an ideal of a commutative ring R is said to be regular if I = I⋄; similarly, an ideal
J of a bounded distributive L is said to be regular if J = J⋄. In general, a congruence θ of the algebra A
is regular if θ = θ⋄.

Lemma 6.4. Assume that θ ∈ Con(A) and I ∈ Id(L(A)).

(1) If θ is a regular congruence of A, then θ∗ is a regular ideal in the lattice L(A);

(2) If I is a regular ideal in the lattice L(A), then there exists a regular congruence χ of A such that
I = χ∗.

Proof. (1) See Proposition 6.19(1) of [18].
(2) χ = (I∗)

⋄ is a regular congruence of A and by using Proposition 6.1 and Lemma 3.3(2), the following
equalities hold: χ∗ = (I∗)

⋄∗ = ((I∗)
∗)⋄ = I⋄ = I.

Proposition 6.5. Let θ, χ be two congruences of A. If θ has CBLP and χ is regular, then θ ∨ χ has
CBLP .

Proof. Let R be a commutative ring such that the lattices L(A) and L(R) are identical (by the Hochster
theorem). Consider an arbitrary maximal congruence ϕ of A. In order to prove that θ ∨ χ has CBLP it
suffices to establish the inequality |B(Con(A/(θ ∨ χ ∨ ϕ⋄)))| ≤ 2 (according to Theorem 6.3).

Let I be an ideal of R and M a maximal ideal of R such that I∗ = θ∗ and M∗ = ϕ∗. By Lemma 6.4(1),
χ∗ is a regular ideal of L(A) = L(R), hence, by using Lemma 6.4(2) for R, we can find a regular ideal J of
R such that J∗ = χ∗.

We observe that ϕ⋄∗ = M⋄∗ (by Proposition 6.1). Remind that the reticulation of any algebra in V
preserves the Boolean center, hence the reticulation of A/(θ∨χ∨ϕ⋄) preserves the Boolean center. According
to Proposition 4.4, Lemma 3.2(2) and Proposition 7.6 of [21] we have the following Boolean isomorphisms:

B(Con(A/(θ ∨ χ ∨ ϕ⋄))) ' B(L(A)/(θ ∨ χ ∨ ϕ⋄)∗) ' B(L(A)/(θ∗ ∨ χ∗ ∨ ϕ⋄∗))
' B(L(R)/(I∗ ∨ J∗ ∨M⋄∗)) ' ... ' B(Con(R/(I ∨ J ∨M⋄))),

therefore |B(Con(A/(θ ∨ χ ∨ ϕ⋄)))| = |B(Con(R/(I ∨ J ∨M⋄)))|.
Since θ has CBLP it follows that I is a lifting ideal of R (by two applications of Proposition 5.5) and

J is a regular ideal of R, therefore, by using Corollary 3.15 of [39] it follows that I ∨ J is a lifting ideal of
R. Then R/(I ∨ J ∨M⋄) has no nontrivial idempotent, i.e. |B(Con(R/(I ∨ J ∨M⋄)))| ≤ 2, hence we get
the desired inequality |B(Con(A/(θ ∨ χ ∨ ϕ⋄)))| ≤ 2.

Corollary 6.6. Any regular congruence χ of A has CBLP .

Proof. We know that ∆A has CBLP . If we take θ = ∆A in the previous proposition it follows that
χ = ∆A ∨ χ has CBLP .

Proposition 6.7. Let θ, χ be two non-coprime congruences of A such that θ has CBLP and |B(Con(A/χ)| ≤
2. Then θ ∩ χ has CBLP .

Proof. Let R be a commutative ring such that L(A) = L(R) and I, J two ideals of R such that I∗ = θ∗

and J∗ = χ∗. By two applications of Proposition 5.5 it follows that I is a lifting ideal of R and by using
Proposition 4.4(1) and Proposition 7.6 of [21], one can prove that |B(Con(A/χ))| = |B(Con(R/J))|, hence
|B(Con(R/J))| ≤ 2, i.e R/J has no nontrivial idempotents. Let ϕ be a maximal congruence of A such that
θ ∨ χ ⊆ ϕ and M a maximal ideal of R such that M∗ = ϕ∗ hence, by using Lemma 3.2(2), one gets

(I ∨ J)∗ = I∗ ∨ J∗ = θ∗ ∨ χ∗ = (θ ∨ χ)∗ ⊆ ϕ∗ =M∗.

Applying Lemma 3.3(2) we obtain I ∨ J = ((I ∨ J)∗)∗ ⊆ (M∗)∗ = M , hence I, J are non-coprime ideals
of R. In accordance with Proposition 3.17 of [39], I ∩ J is a lifting ideal of R. By Lemma 3.3(1) we have
(θ ∩ χ)∗ = θ∗ ∩ χ∗ = I∗ ∩ J∗ = (I ∩ J)∗. By two applications of Proposition 5.5 it follows that θ ∩ χ has
CBLP .
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Recall from [37] that a clean ring is a ring R such that any element of R is the sum of a unit and an
idempotent. We know from [37] that a commutative ring R is clean if and only if any ideal of R is a lifting
ideal.

Proposition 6.8. Let θ be a congruence of A such that θ ⊆ Rad(A). If A/θ has CBLP then A has CBLP .

Proof. Let R be a commutative ring such that L(A) = L(R) and I an ideal of R such that I∗ = θ∗. By
using Lemma 3.3 and the bijective correspondence between Max(A) and Max(R) (cf. Remark 3.7) we can
prove that I ⊆ Rad(R).

According to Proposition 7.6 of [21], we have the following Boolean isomorphisms: L(A/θ) ' L(A)/θ∗ =
L(R)/I∗ = L(R/I). By applying Proposition 5.5, the following implications hold:

A/θ has CBLP ⇒ L(A/θ) has Id−BLP

⇒ L(R/θ) has Id−BLP

⇒ R is a clean ring.

In accordance with Proposition 1.5 of [37] or Corollary 6.6 of [39] it results that R is a clean ring. Thus,
a new application of Proposition 5.5 shows that the algebra A has CBLP .

Following [20], the algebra A is said to be B-normal if for all coprime congruences χ, ε of A there exist
α, β ∈ B(Con(A)) such that χ ∨ α = ε ∨ β = ∇A and [α, β] = ∆A. By using Theorem 6.3 one can give a
short proof of the following theorem from [20].

Theorem 6.9. The following are equivalent:

(1) The algebra A has CBLP ;

(2) A is a B-normal algebra.

Proof. (1) ⇒ (2) Let χ, ε be two coprime congruences of A. By hypothesis, θ = [χ, ε] has CBLP , so one can
apply the condition (3) of Theorem 6.3, so there exists α ∈ B(Con(A)) such that α ⊆ θ∨χ = [χ, ε]∨χ = χ
and ¬α ⊆ θ∨ ε = [χ, ε]∨ ε = ε. Denoting β = ¬α we have ∇A = α∨¬α ⊆ χ∨ β and ∇A = ¬α∨α ⊆ ε∨α,
so χ ∨ β = ε ∨ α = ∇A and [α, β] = [α,¬α] = ∆A.

(2) ⇒ (1) Assume that θ ∈ Con(A) and χ, ε are two coprime congruences of A such that θ = [χ, ε]. Since
A is a B-normal algebra and χ, ε are two coprime we can find α, β ∈ B(Con(A)) such that χ∨α = ε∨β = ∇A

and [α, β] = ∆A. It is easy to see that ¬α ⊆ χ and α ⊆ ¬β ⊆ ε. It follows that α ⊆ ε = ε ∨ [χ, ε] = ε ∨ θ
and ¬α ⊆ χ = χ ∨ [χ, ε] = χ ∨ θ, so θ has CBLP (by applying Theorem 6.3).

Theorem 6.10. Let θ be a congruence of A such that θ ⊆ Rad(A) and θ has CBLP . If A/θ is B-normal,
then A is B-normal.

Proof. By Theorem 6.9, the quotient algebra A/θ has CBLP . Let R be a commutative ring and I an ideal
of R such that L(A) = L(R) and θ∗ = I∗. Assume that M is a maximal ideal of R, so M∗ = ϕ∗, for some
maximal congruence ϕ of A. Thus θ ⊆ Rad(A) ⊆ ϕ, hence I∗ = θ∗ ⊆ ϕ∗ =M∗. By applying Lemma 3.3(2),
we get I = (I∗)∗ ⊆ (M∗)∗ =M . We have proven that I ⊆ Rad(R). On the other hand, by Proposition 7.6
of [21] we get the following lattice isomorphisms: L(A/θ) ' L(A)/θ∗ = L(R)/M∗ = L(R/I). According to
Proposition 5.5, it results that R/I has CBLP , so it is a clean ring. By hypothesis, θ has CBLP , hence I
is a lifting ideal of R (by two applications of Proposition 5.5).

We remark that R and I verifies the hypotheses of Corollary 6.6 of [39], so R is a clean ring. By two
applications of Proposition 5.5 it follows that A has CBLP . A new application of Theorem 6.9 shows that
A is B-normal.

7 Lifting orthogonal sets of Boolean congruences
In this section we shall prove a characterization theorem for congruences of algebras that have CBLP .
Let us consider a semidegenerate congruence modular variety V such that for any algebra A ∈ V , the

set K(A) of finitely generated congruences of A is closed under the commutator operation.
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Let u : A → A′ be a morphism of algebras in the variety V and Ω′ a subset of Con(A′). We say that
the morphism u lifts Ω′ to a subset Ω of Con(A) if Ω′ = {u•(α)|α ∈ Ω}. The morphism u lifts the Boolean
congruences if it lifts B(Con(A′)) to B(Con(A)). Of course, a congruence θ of an algebra A ∈ V has CBLP
if and only if pθ : A→ A/θ lifts the Boolean congruences.

Recall that a subset E of a Boolean algebra B is called an orthogonal set if e ∧ f = 0, for all distinct
e, f ∈ E. Then an orthogonal set of Boolean congruences of an algebra A is a subset Ω of B(Con(A)) such
that [α, β] = α ∩ β = ∆A, for all distinct α, β ∈ Ω.

Theorem 7.1. If the morphism u : A→ A′ lifts the Boolean congruences and Ω′ is a countable orthogonal
set in B(Con(A′)), then there exists a countable orthogonal set Ω in B(Con(A)) such that u lifts Ω′ to Ω.

Proof. Let Ω′ = {β1, ..., βn, ...} be a countable orthogonal subset of the Boolean algebra B(Con(A′)). We
shall construct by induction a countable orthogonal subset Ω = {α1, ..., αn, ...} of the Boolean algebra
B(Con(A)) such that the morphism u lifts Ω′ to Ω.

Assume that {α1, ..., αn} is an orthogonal subset of B(Con(A)) such that u•(αi) = βi, for all i = 1 · · · , n.
Since u : A→ A′ lifts the Boolean congruences there exists α ∈ B(Con(A)) such that u•(α) = βn+1. Let us
denote αn+1 = α∧¬(

∨n
i=1 αi), so {α1, ..., αn+1} is an orthogonal subset of B(Con(A)). Since {β1, ..., βn+1}

is an orthogonal subset of B(Con(A′)) we have βn+1 ≤ ¬(
∨n

i=1 βi), therefore, by taking into account that
u•|B(Con(A)) is a Boolean morphism, we get

u•(αn+1) = u•(α) ∧ ¬(
n∨

i=1

u•(αi)) = βn+1 ∧ ¬(
n∨

i=1

βi) = βn+1.

Recall that for all α, β ∈ B(Con(A)) we denote α− β = α ∩ ¬β.

Lemma 7.2. (1) If α ∈ B(Con(A)), then α ⊆ Rad(A) implies α = ∆A;
(2) If α, β ∈ B(Con(A)), then α− β ⊆ Rad(A) implies α = β.

Proof. (1) Let α be a complemented congruence of A such that α ⊆ Rad(A). Assume by absurdum that
α 6= ∆A, hence ¬α 6= ∇A, so ¬α ⊆ ϕ, for some maximal congruence ϕ. On the other hand, we have
α ⊆ Rad(A) ⊆ ϕ, hence we obtain ∇A = α ∨¬α ⊆ ϕ, contradicting that ϕ ∈Max(A). Thus it follows that
α = ∆A.

(2) This assertion follows from (1).

Theorem 7.3. Let θ be a congruence of A such that θ ⊆ Rad(A). Assume that Ω′ is an orthogonal subset
of B(Con(A/θ)) which is lifted to a subset Ω of B(Con(A)). Then the set Ω is unique (w.r.t. the mentioned
property) and its elements are orthogonal.

Proof. Firstly we shall prove the uniqueness of Ω. Consider that Ω′ is lifted to the subsets Ω1,Ω2 of
B(Con(A)). Let α be a congruence from Ω1, so p•θ(α) ∈ Ω′. Then there exists a congruence β ∈ Ω2 such
that p•θ(β) = p•θ(α).

Since p•θ|B(Con(A)) is a Boolean morphism it preserves the difference ”−”, hence p•θ(α − β) = p•θ(α) −
p•θ(β) = ∆A/θ, i.e ((α − β) ∨ θ)/θ = (α1 ∨ θ)/θ. Then (α − β) ∨ θ = θ, hence α − β ⊆ θ ⊆ Rad(A). By
applying Lemma 7.2(2) we get α = β, so α ∈ Ω2. We have proven that Ω1 ⊆ Ω2. The converse inclusion
Ω2 ⊆ Ω1 follows in a similar manner, so Ω1 = Ω2.

Consider now two distinct congruences α1, α2 ∈ Ω. By using Lemma 7.2(2) it is easy to see that
p•θ(α1), p

•
θ(α2) are two distinct congruences of Ω′, so they are orthogonal. Thus

([α1, α2] ∨ θ)/θ = [(α1 ∨ θ)/θ, (α2 ∨ θ)/θ] = (α1 ∨ θ)/θ,

hence [α1, α2] ⊆ θ ⊆ Rad(A). By using Lemma 7.2(1) we obtain [α1, α2] = ∆A, i.e. α1, α2 are orthogonal
congruences.

Theorem 7.4. Let θ be a congruence of A such that θ ⊆ Rad(A). If θ has CBLP , then any set of atoms
of B(Con(A/θ)) can be uniquely lifted to a set of atoms of B(Con(A)).
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Proof. Let Ω′ be a set of atoms of the Boolean algebra B(Con(A/θ)). Since θ has CBLP there exists a set
Ω ⊆ B(Con(A)) such that Ω′ = {p•θ(α)|α ∈ Ω}. The uniqueness of Ω follows by applying Theorem 7.3.

Now we have to prove that any α ∈ Ω is an atom of B(Con(A)). Let us consider a congruence β ∈
B(Con(A)) such that β 6= ∆A and β ⊆ α. If we assume that p•θ(β) = (β ∨ θ)/θ = ∆A/θ, then β ⊆ θ ⊆
Rad(A), by using Lemma 7.2(1) we get β = ∆A. This contradiction shows that p•θ(β) 6= ∆A/θ. Since
p•θ(β) ⊆ p•θ(α) and p•θ(α) is an atom of the Boolean algebra B(Con(A/θ)) it follows that p•θ(α) = p•θ(β).

Let us consider the difference α− β ∈ B(Con(A)). Since p•θ|B(Con(A)) is a Boolean morphism it follows
that p•θ(α − β) = p•θ(α) − p•θ(β) = ∆A/θ, hence α − β ⊆ θ ⊆ Rad(A). By applying Lemma 7.2(2) we get
α = β, so α is an atom of B(Con(A)).

Corollary 7.5. Let θ be a congruence of A such that θ ⊆ ρ(∆A). Then any set of atoms of B(Con(A/θ))
can be uniquely lifted to a set of atoms of B(Con(A)).

Proof. Let Ω′ be a set of atoms of B(Con(A/θ)). According to Corollary 5.9, the hypothesis θ ⊆ ρ(∆A)
implies that θ has CBLP . Observing that θ ⊆ ρ(∆A) ⊆ Rad(A) and applying Theorem 7.4, it follows that
Ω′ can be uniquely lifted to a set of atoms of B(Con(A)).
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