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Abstract

In this paper, first we define the concept of nilpotent element
on a hoop H, study some properties of them and investigate
the relation with ultra deductive systems. Then by using this
notion, we introduce cyclic hoops and prove that every cyclic
hoop has a unique generator and is a local MV -algebra. In the
follows, we introduce the notion of Boolean elements on hoops
and investigate some of their properties and relation among
Boolean elements with ultra deductive systems and nilpotent
elements. Finally, we introduce a functor between the category
of hoops and category of Boolean elements of them.
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1 Introduction
Non-classical logic has become a formal and useful tool for computer science to deal with uncertain infor-
mation and fuzzy information. The algebraic counterparts of some non-classical logics satisfy residuation
and those logics can be considered in a frame of residuated lattices [10]. For example, Hájek’s BL (basic
logic [12]), Lukasiewiczs MV (many-valued logic [9]) and MTL (monoidal t-norm based logic [14]) are de-
termined by the class of BL-algebras, MV-algebras and MTL-algebras, respectively. All of these algebras
have lattices with residuation as a common support set. Thus, it is very important to investigate proper-
ties of algebras with residuation. Hoops are naturally ordered commutative residuated integral monoids,
introduced by B. Bosbach in [9, 14]. In the last years, hoops theory was enriched with deep structure
theorems(see [3, 9, 14]). Many of these results have a strong impact with fuzzy logic. Particularly, from
the structure theorem of finite basic hoops([3], Corollary 2.10) one obtains an elegant short proof of the
completeness theorem for propositional basic logic(see [3], Theorem 3.8), introduced by Hájek in [12]. The
algebraic structures corresponding to Hájek’s propositional (fuzzy) basic logic, BL-algebras, are particular
cases of hoops. The main example of BL-algebras in interval [0, 1] endowed with the structure induced
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by a t-norm. In [5], the authors showed that there are relations among hoops and some of other logical
algebras such as residuated lattices, MTL-algebras, BL-algebras, MV-algebras, BCK-algebras, equality al-
gebras, EQ-algebras, R0-algebras, Hilbert algebras, Heyting algebras, Hertz algebras, lattice implication
algebras and fuzzy implication algebras. The aim of this paper is to find that under what conditions hoops
are equivalent to these logical algebras. For more study about hoops we suggest to study [1, 2, 5]

In this paper, we define the concept of order and nilpotent element of hoop H and we study some
properties of them. Then by using this notion, we introduce cyclic hoops and prove that every cyclic hoop
has a unique generator and is a local MV -algebra. Also, we introduce other notions such as dense and
Boolean elements on hoops and investigate some of their properties and relation between them. Then by
using the notion of Boolean element, we define a functor and prove some properties of hoop category.

2 Preliminaries
In this section, we will point out the concepts and conclusions that we will need throughout the article.

An algebraic structure (H,⊙,→, 1) is said to be a hoop if for all x, y, z ∈ H the next conditions hold:
(H1) (H,⊙, 1) is a commutative monoid.
(H2) x → x = 1.
(H3) (x⊙ y) → z = x → (y → z).
(H4) x⊙ (x → y) = y ⊙ (y → x).

Define a binary relation ≤ such that x ≤ y iff x → y = 1 and (H,≤) is a poset. A bounded hoop is a
hoop with the least element 0 such that, for all x ∈ H, 0 ≤ x. Consider x0 = 1 and xn = xn−1 ⊙ x, for
any n ∈ N. In any bounded hoop, we can define the negation operation ¬ on H by, ¬x = x → 0. We
set Mv(H) = {x ∈ H | ¬(¬x) = x}. If Mv(H) = H, then H has double negation property, or (DNP) for
short(see [7, 8]).

A hoop H is said to be a ∨-hoop if the operation ∨ which is defined as x ∨ y = ((x → y) → y) ∧ ((y →
x) → x) be a join operation on H. It is easy to see that ∨-hoop is a distributive lattice (see [10]).

Note. From now on, in this paper we consider (H,⊙,→, 1) or H for short, as a bounded hoop.

Proposition 2.1. [10] The following statements hold for any x, y, z ∈ H:
(i) H is a meet-semilattice.
(ii) x⊙ y ≤ x, y and for any n ∈ N, xn ≤ x.
(iii) If x ≤ y, then z → x ≤ z → y, y → z ≤ x → z and x⊙ z ≤ y ⊙ z.
(iv) x → y ≤ (z → x) → (z → y) and x → y ≤ (y → z) → (x → z).
(v) If H is a ∨-hoop, then (x ∨ y)n → z =

∨
{(a1 ⊙ a2 ⊙ · · · ⊙ an) → z | ai ∈ {x, y}}.

(vi) If H is a ∨-hoop, then (x ∨ y)⊙ z = (x⊙ z) ∨ (y ⊙ z) and (x ∨ y) → z = (x → z) ∧ (y → z).
(vii) x ≤ ¬x → y, ¬x⊙ x = 0, ¬¬¬x = ¬x and x ≤ ¬¬x.
(viii) ((x → y) → y) → y = x → y.

Consider ∅ ̸= F ⊆ H. Then F is said to be a deductive system of H if x, y ∈ F , then x ⊙ y ∈ F and if
x ≤ y and x ∈ F , then y ∈ F .

All deductive systems of H showed by F(H). Clearly, 1 ∈ F and F is proper if F ̸= H. Obviously,
F ∈ F(H) iff 1 ∈ F , and x, x → y ∈ F imply y ∈ F .

Let F ∈ F(H). Define a relation ∼F on H as follows:

x ∼F y iff x → y ∈ F and y → x ∈ F.

Then ∼F is a congruence relation on H. Consider H
F = { x

F | x ∈ H}. Then define the operations ⊙F and
→F on H

F as follows:
x

F
⊙F

y

F
=

x⊙ y

F
and x

F
→F

y

F
=

x → y

F
.

Then (HF ,⊙F ,→F ,
1
F ) is a hoop.
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If X ⊆ H, we denote by ⟨X⟩ the deductive system generated by X in H, that is ⟨X⟩ =
∩

X⊆F

F , where

F ∈ F(H). A description of ⟨X⟩ is easily obtained:
Proposition 2.2. [10] Suppose X ⊆ H and F ∈ F(H). Then

⟨X⟩ = {a ∈ H | x1 ⊙ x2 ⊙ · · · ⊙ xn ≤ a for some n ∈ N and x1, · · · , xn ∈ X}
= {a ∈ H | x1 → (x2 → (· · · → (xn → a) · · · )) = 1 for some n ∈ N and x1, · · · , xn ∈ X}

In particular, for any element x ∈ H, we have
⟨x⟩ = {a ∈ H | xn ≤ a for some n ∈ N} = {a ∈ H | xn → a = 1 for some n ∈ N}.

Let F ∈ F(H) and x ∈ H. Then

⟨F ∪ {x}⟩ = {a ∈ H | ∃ n ∈ N, f ∈ F such that f ⊙ xn ≤ a} = {a ∈ H | ∃ n ∈ N such that xn → a ∈ F}.
A proper deductive system U is called an ultra deductive system of H if U is the greatest deductive

system of H which does not contain in any other proper deductive system of H. All ultra deductive systems
of H are shown by U(H). Let I be a non-empty subset of H. Then I is called an ideal of H if for any
x, y ∈ I, ¬x → y ∈ I, x ≤ y and y ∈ I imply—- x ∈ I. Clearly, H and {0} are the trivial ideals of H. The
set of all ideals of H is denoted by ID(H). Also, I is called a proper ideal if I is an ideal of H such that
I ̸= H. Obviously, an ideal I is proper iff it is not containing 1. If H and K are two hoops, then F : H → K
is a hoop homomorphism if for any x, y ∈ H, we have f(x → y) = f(x) → f(y) and f(x⊙ y) = f(x)⊙ f(y)
(see [1]).

3 Nilpotent elements and ultra deductive systems in hoops
In the following, we define the concept of order and nilpotent element on H and we study some properties
of them. Then we investigate relation between nilpotent elements and ultra deductive systems. Specially,
we introduce a cyclic hoop and we prove that every cyclic hoop has a unique generator and is a local
MV -algebra.
Definition 3.1. A hoop H is said to be a simple hoop if F(H) = {{1},H}.
Example 3.2. (i) Let H = {0, a, b, 1} be a chain. Define the operations ⊙ and → on H as follows:

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

⊙ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

Then (H,⊙,→, 0, 1) is a simple hoop.

(ii) Let H = {0, a, b, 1} be a set with the following Hesse diagram.

rr rr

0

a b

1

�
�

A
A
�
�
A
A

Define the operations ⊙ and → on H as follows:

→ 0 a b 1
0 1 1 1 1
a b 1 b 1
b a a 1 1
1 0 a b 1

⊙ 0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1
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Then (H,⊙,→, 0, 1) is a bounded hoop, where F(H) = {{1}, {a, 1}, {b, 1},H}. Clearly, H is not simple.

Proposition 3.3. Let U be a proper deductive system of H. Then the following statements are equivalent:
(i) U ∈ U(H),
(ii) H

U is simple,
(iii) x ∈ H \ U iff there exists n ∈ N such that ¬(xn) ∈ U .
Proof. (i ⇒ ii) Since U ∈ U(H), we get H

U is a non-obvious hoop. In addition, we know that there exists
one-to-one corresponding relation between F(H) and F(HU ) that containing U , we get that if G

U ∈ F(HU ),
then U ⊊ G ⊊ H, a contradiction. Hence H

U is simple.
(ii ⇒ i) Suppose G ∈ F(H) such that U ⊆ G ⊆ H. Thus G

U ∈ F(HU ). Since H
U is simple, we have G

U = 1
U or

G
U = H

U . It means G = U or G = U , and so U ∈ U(H).
(i ⇒ iii) Let x ∈ H \U . Since U ∈ U(H), clearly ⟨U ∪ {x}⟩ = H, and so 0 ∈ ⟨U ∪ {x}⟩. Thus xn → 0 ∈ U .
Hence ¬(xn) ∈ U .

Conversely, if x ∈ U and ¬(xn) ∈ U , since U ∈ F(H), then we have 0 ∈ U , which is a contradiction.
Hence, x /∈ U .
(iii ⇒ i) Consider G ∈ F(H) such that U ⊂ G ⊆ H. Since U ̸= G, there is x ∈ G \U such that ¬(xn) ∈ U .
Thus ¬(xn) ∈ G. Since x ∈ G and G ∈ F(H), we get 0 ∈ G, and so G = H. Therefore, U ∈ U(H).

Proposition 3.4. For any proper deductive system F of H, there exists U ∈ U(H) that contains F .
Proof. Consider

∑
= {P ∈ F(H) | P ̸= H such that F ⊆ P}. Since F ∈

∑
, we get

∑
̸= ∅. By the simple

way, we can see that any chain of elements in (
∑

,⊆) has a maximal in it. Hence, using Zorn’s Lemma, there
exists a maximal element U ∈

∑
and it is easy to see that it is an ultra deductive system of H containing

F .

Definition 3.5. A hoop H is called local if it has just one ultra deductive system. Obviously, any simple
hoop is local.
Example 3.6. Let H be the hoop as in Example 3.2(i). Then {1} is just an ultra deductive system of H.
Proposition 3.7. Every chain hoop is local.
Proof. Suppose H is not local. Then there exist U1, U2 ∈ U(H) such that U1 ̸= U2. Thus there are
x ∈ U1 \ U2 and y ∈ U2 \ U1. Since H is a chain, we have x ≤ y or y ≤ x. If x ≤ y, then from U1 ∈ F(H)
and x ∈ U1, we have y ∈ U1, is a contradiction. By the similar way, if y ≤ x, then x ∈ U2, a contradiction.
Hence U1 = U2, and so H is local.

Definition 3.8. If there exists the smallest n ∈ N such that xn = 0, then n is called order of x and showed
by O(x) and x is called a nilpotent element of H. If for any n ∈ N, xn ̸= 0, then O(x) = ∞. The set of all
nilpotent elements of H is denoted by Nil(H) and Inf(H) = {x ∈ H | O(x) = ∞}.
Example 3.9. Let H = {0, a, b, c, d, 1} with the following Hesse diagram.

r
0
JJ 


ra rZ
Z

b

rJJ dr

c

r1

Define the operations ⊙ and → on H as follows:

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a b c 1 1
1 0 a b c d 1

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1
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Then (H,⊙,→, 0, 1) is a bounded hoop. Then Inf(H) = {1, a, c, d} and Nil(H) = {0, b}.

Notation. Since 1 /∈ Nil(H), clearly Nil(H) is not a deductive system of H.
Suppose (X,≤) is a lattice. A non-empty subset I of X is called a lattice ideal of X if for any x, y ∈ X,

x ≤ y and y ∈ I imply x ∈ I, and for any x, y ∈ I, x ∨ y ∈ I.

Proposition 3.10. The set Nil(H) is a lattice ideal of H, where H is a bounded ∨-hoop.

Proof. Clearly 0 ∈ Nil(H). Consider y ∈ Nil(H) and x ∈ H such that x ≤ y. Then there exists n ∈ N
such that yn = 0. Since x ≤ y, we have xn ≤ yn and so xn = 0. Hence, x ∈ Nil(H). Now, if x, y ∈ Nil(H),
then there are n,m ∈ N such that xn = ym = 0. Thus by Proposition 2.1(v), we have

(x ∨ y)n+m → 0 =
∧

{(a1 ⊙ a2 ⊙ · · · ak) → 0 | ai ∈ {x, y}}.

Clearly, if i > n, then xi = 0, and so (a1 ⊙ a2 ⊙ · · · ak) → 0 = 1, it means that a1 ⊙ a2 ⊙ · · · ak = 0. If i ≤ n,
then j > m + n − i > m, and so yj = 0. Thus a1 ⊙ a2 ⊙ · · · ak = 0. Hence (x ∨ y)n+m → 0 = 1, and so
(x ∨ y)n+m = 0. Then x ∨ y ∈ Nil(H). Therefore, Nil(H) is a lattice ideal of H.

Next example shows that Nil(H) /∈ ID(H).

Example 3.11. Let H be a hoop as in Example 3.2(ii). Clearly Nil(H) = {0, a, b} but it is not an ideal of
H since ¬b → a = a → a = 1 /∈ Nil(H).

Next example shows that Inf(H) /∈ F(H).

Example 3.12. Let A = {0, a, b, c, 1}. Define the operations ⊙ and → on H as follows,

s
s s

s
s

@
@@

�
��

�
��

@
@@

0

1

a

c

b

→ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

⊙ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 0 a b c 1

Thus, (H,⊙,→, 0, 1) is a hoop. Since Inf(H) = {a, b, c, 1} and a⊙ b = 0, we consequence Inf(H) /∈ F(H).

Proposition 3.13. Assume U ∈ U(H). Then U ⊆ Inf(H).

Proof. Suppose U ⊈ Inf(H). Then there is x ∈ U \ Inf(H). Since x /∈ Inf(H), we get that there
exists n ∈ N such that xn = 0. As U ∈ U(H), we have 0 ∈ U , which is a contradiction. Therefore,
U ⊆ Inf(H).

Next example shows that every subset of Inf(H) is not an ultra deductive system of H, in general.

Example 3.14. According to Example 3.12, since Inf(H) = {a, b, c, 1} /∈ F(H), we obtain Inf(H) /∈ U(H).

Proposition 3.15. Consider U ∈ U(H). Then U = Inf(H) iff for any x, y ∈ H, x⊙ y ∈ Nil(H) implies
x ∈ Nil(H) or y ∈ Nil(H).

Proof. Suppose U = Inf(H) and for any x, y ∈ H, x⊙ y ∈ Nil(H). Thus x⊙ y /∈ U . Since U ∈ U(H), we
have x /∈ U or y /∈ U . Because if x, y ∈ U , then x⊙ y ∈ U , which is a contradiction. Hence, x /∈ Inf(H) or
y /∈ Inf(H). Therefore, x ∈ Nil(H) or y ∈ Nil(H).

Conversely, by Proposition 3.13, clearly U ⊆ Inf(H). Now, we prove Inf(H) is a proper deductive
system of H. For this, since O(1) = ∞, we get 1 ∈ Inf(H) and so Inf(H) ̸= ∅. Assume x ∈ Inf(H) and
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y ∈ H such that x ≤ y. If y /∈ Inf(H), then there is n ∈ N such that yn = 0 and from xn ≤ yn we obtain
xn = 0, which is a contradiction. Hence, y ∈ Inf(H). Now, suppose x, y ∈ Inf(H). If x⊙y /∈ Inf(H), then
x ⊙ y ∈ Nil(H) and by assumption, x ∈ Nil(H) or y ∈ Nil(H), a contradiction. Hence, x ⊙ y ∈ Inf(H),
and so Inf(H) ∈ F(H). Moreover, from 0 /∈ Inf(H), we get Inf(H) is proper. Also, U ∈ U(H) such that
U ⊆ Inf(H). Thus U = Inf(H).

Proposition 3.16. A hoop H is simple iff for any x ∈ H \ {1}, x ∈ Nil(H).

Proof. (⇒) Consider x ∈ H \ {1} such that O(x) = ∞. Let F = ⟨x⟩. Since x ̸= 1, we get {1} ⊂ F . If
F = H, then 0 ∈ F , and so for n ∈ N, O(x) = n, which is a contradiction. Hence, {1} ⊂ F ⊂ H. Thus
F ∈ F(H), a contradiction. Hence, for any x ∈ H, x ∈ Nil(H).
(⇐) Suppose H is not simple. Then there is F ∈ F(H) such that {1} ⊂ F ⊂ H. Consider x ∈ F such
that ⟨x⟩ = F . Since F ̸= H, we get 0 /∈ F , and so for any n ∈ N, xn ̸= 0. Hence, O(x) = ∞, which is a
contradiction. Therefore, H is simple.

Proposition 3.17. Suppose {Hi | i ∈ I} is a family of hoops. Then
(i) x ∈ Nil(H) iff ⟨x⟩ = H.
(ii) Nil(

∏
i∈I

Hi) =
∏
i∈I

Nil(Hi).

Proof. (i) Suppose x ∈ Nil(H) iff O(x) = n, for n ∈ N iff xn = 0 iff 0 ∈ ⟨x⟩ iff ⟨x⟩ = H.
(ii) We set x = (x1, x2, · · · , xi, · · · ). Then x ∈ Nil(

∏
i∈I

Hi) iff there is n ∈ N such that xn = 0 iff

(xn
1 , x

n
2 , · · · , xn

i , · · · ) = (0, 0, · · · , 0, · · · ) iff for any i ∈ I, xn
i = 0 iff for any i ∈ I, xn

i ∈ Nil(Hi) iff
x ∈

∏
i∈I

Nil(Hi).

Definition 3.18. Suppose H is finite. If there is an element x ∈ H such that O(x) =| H | −1, then H is
said to be cyclic and x is a generator of H.

Example 3.19. (i) Every non-zero subalgebra of a cyclic hoop is cyclic.
(ii) Let H be a hoop as in Example 3.2(ii). Then Nil(H) = {0, a, b} and O(b) = 3 =| H | −1. Hence, b is
a generator of H and H is cyclic.

Theorem 3.20. Consider H is cyclic such that | H |= n+ 1. Then
(i) there is x ∈ H such that O(x) = n and H = {xi → 0 | 0 ≤ i ≤ n}.
(ii) H is a chain.
(iii) the generator is the greatest element of H \ {1}.
(iv) the generator of H is unique.
(v) H has (DNP).

Proof. (i) Since H is cyclic, by Definition 3.18, we get H is finite and there is an element x ∈ H such that
O(x) =| H | −1 = n+1− 1 = n. Set K = {xi → 0 | 0 ≤ i ≤ n}. From O(x) = n, we obtain x0 → 0 = 0 and
xn → 0 = 1, thus 0, 1 ∈ K. Now, we prove that every both members of K are distinct. For this, suppose
xi → 0, xj → 0 ∈ K, for any 1 ≤ i, j ≤ n− 1. If i < j and xi → 0 = xj → 0, then

1 = xn → 0 = xn−j+j → 0 = (xn−j ⊙ xj) → 0 = xn−j → (xj → 0)

= xn−j → (xi → 0) = (xn−j ⊙ xi) → 0

= xn−j+i → 0.

Since i < j, we have n − j + i < n and so xn−j+i = 0, which is a contradiction with O(x) = n. Hence,
xi → 0 ̸= xj → 0, for any 1 ≤ i, j ≤ n− 1. Also, obviously | K |= n+ 1. Since K ⊆ H and | K |=| H |, we
have K = H.
(ii) By (i), H = {xi → 0 | 0 ≤ i ≤ n}. Suppose a, b ∈ H. Then there are 0 ≤ i, j ≤ n such that a = xi → 0
and b = xj → 0. With out loss of generality, suppose j ≤ i. Then xi ≤ xj , by Proposition 2.1(iii),
xj → 0 ≤ xi → 0, and so b ≤ a. By the similar way, if i ≤ j, then a ≤ b. Hence, H is a chain.
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(iii) By (i), H = {xi → 0 | 0 ≤ i ≤ n}. Since x ̸= 1 is a generator of H, we have x ∈ {xi → 0 | 0 ≤ i ≤ n}.
Thus there is 1 ≤ i ≤ n such that x = xi → 0. Hence

xi+1 → 0 = x → (xi → 0) = x → x = 1

and so xi+1 = 0. From O(x) = n, we have n ≤ i + 1, and so n − 1 ≤ i. If i = n, then x = xn → 0 = 1, is
a contradiction. Thus i = n − 1 and so x = xn−1 → 0. Therefore, the generator is the greatest element of
H \ {1}.
(iv) Suppose there are two generators for H. By (ii), H is a chain, so x ≤ y or y ≤ x. In addition, by (iii),
the generator is the greatest element of H \ {1}. Thus x = y.
(v) Consider a ∈ H. By (i), for 0 ≤ i ≤ n, a = xi → 0. Then by Proposition 2.1(viii) we have

a = xi → 0 = ((xi → 0) → 0) → 0 = ¬(¬a).

Hence, H has (DNP).

Corollary 3.21. Every cyclic hoop is an MV-algebra.

Proof. By Theorem 3.20(v) and [5, Theorem 3.12 and Corollary 3.13] the proof is clear.

Next example shows that the converse of above theorem does not hold.

Example 3.22. (i) Let H be a hoop as in Example 3.2(i). Clearly H has DNP property but H is not cyclic.
(ii) Let H be a hoop as in Example 3.2(ii). This example confirm Theorem 3.20.
(iii) Let H = {0, a, b, 1} be a chain. Define the operations ⊙ and → on H as follows:

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 b 1 1
1 0 a b 1

⊙ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a a b
1 0 a b 1

Then (H,⊙,→, 0, 1) is a bounded hoop. Obviously H is generated by 0 that is not the greatest element of
H. Hence, H is not cyclic.

Corollary 3.23. If H is a cyclic hoop such that | H |= n+ 1, then H is a local hoop.

Proof. By Theorem 3.20, H is a chain and by Proposition 3.7, H is local.

Note. Define Ds(H) = {x ∈ H | ¬x = 0}. Since ¬0 = 1, obviously, we get 0 /∈ Ds(H) and so
Ds(H) /∈ ID(H).

Example 3.24. Let H be the hoop as in Example 3.22(iii). Then Ds(H) = {a, b, 1}.

Proposition 3.25. The set Ds(H) is a deductive system of H.

Proof. Clearly 1 ∈ Ds(H). Consider x, y ∈ Ds(H). Then ¬x = ¬y = 0. Thus

¬(x⊙ y) = x → ¬y = x → 0 = 0,

and so x ⊙ y ∈ Ds(H). If x ∈ Ds(H) and x ≤ y, since ¬y ≤ ¬x = 0, we have ¬y = 0. Hence y ∈ Ds(H).
Therefore, Ds(H) ∈ F(H).

Proposition 3.26. If F ⊆ Ds(H) and F is a proper deductive system of H, then Ds(HF ) = Ds(H)
F

Proof. Consider x ∈ H. Then x
F ∈ Ds(H)

F iff x ∈ Ds(H) iff ¬x = 0 iff ¬¬x = 1 ∈ F iff 0 → ¬x ∈ F and
¬x → 0 ∈ F iff ¬x

F = 0
F iff ¬

(
x
F

)
= 0

F iff x
F ∈ Ds(HF ).
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Proposition 3.27. The following statements are equivalent:
(i) H

Ds(H) implies (DNP) property.
(ii) For any x ∈ H, ¬¬(¬¬x → x) = 1.

Proof. (i ⇒ ii) Since H
Ds(H) implies (DNP) property, we get that for any x

Ds(H) ∈ H
Ds(H) , we have

¬¬( x
Ds(H) ) = x

Ds(H) . Thus x → ¬¬x = 1 ∈ Ds(H) and ¬¬x → x ∈ Ds(H). Then ¬(¬¬x → x) = 0,
and so ¬¬(¬¬x → x) = 1.
(ii → i) Since for any x ∈ H, ¬¬(¬¬x → x) = 1, we get ¬(¬¬x → x) = ¬¬¬(¬¬x → x) = 0, and so
¬¬x → x ∈ Ds(H). Also, from x → ¬¬x = 1, we obtain x → ¬¬x ∈ Ds(H). Thus ¬¬( x

Ds(H) ) =
x

Ds(H) .
Therefore, H

Ds(H) implies (DNP) property.

Note. Define R(H) =
∩

U∈U(H)

U .

Example 3.28. Let H be a hoop as in Example 3.2(ii). Then R(H) = {a, 1} ∩ {b, 1} = {1}.

Proposition 3.29. R(H) = {x ∈ H | ∀n ∈ N, ∃ k ∈ N s.t. (¬xn)k = 0}.

Proof. Let B = {x ∈ H | ∀n ∈ N, ∃ k ∈ N s.t. (¬xn)k = 0}. Suppose x ∈ B such that x /∈ R(H). Since
x /∈ R(H), we get that there exists U ∈ U(H) such that x /∈ U . By Proposition 3.3(iii), there is n ∈ N
such that ¬xn ∈ U . Since U ∈ F(H), for any k ∈ N, (¬xn)k ∈ U . On the other side, from x ∈ B we have
(¬xn)k = 0, and so 0 ∈ U , which is a contradiction. Hence, B ⊆ R(H).

Conversely, suppose x ∈ R(H) such that x /∈ B. Then for any U ∈ U(H), x ∈ U . Since U ∈ F(H), for
any n ∈ N, xn ∈ U , and so ¬(xn) /∈ U . In addition, x /∈ B, then there exists n ∈ N such that for any k ∈ N,
(¬xn)k ̸= 0. So the generated deductive system that is made by (¬xn)k is proper. By Proposition 3.4, there
exists U ∈ U(H) such that ⟨(¬xn)k⟩ ⊆ U , which is a contradiction. Hence, R(H) ⊆ B. Therefore,

R(H) = {x ∈ H | ∀n ∈ N, ∃ k ∈ N s.t. (¬xn)k = 0}.

Proposition 3.30. The next statements hold:
(i) Ds(H) ⊆ R(H).
(ii) x

Ds(H) ∈
U

Ds(H) if and only if x ∈ U .
(iii) U( H

Ds(H) ) = { U
Ds(H) | U ∈ U(H)}.

(iv) R( H
Ds(H) ) =

R(H)
Ds(H) .

(v) x
Ds(H) ∈

R(H)
Ds(H) if and only if x ∈ R(H).

(vi) U(H) and U( H
Ds(H) ) are homeomorphic topological space.

(vii) if x ∈ R(H), then ¬¬x ∈ R(H).

Proof. (i) Suppose Ds(H) ⊈ R(H). Then there exists x ∈ Ds(H) such that ¬x = 0 and x /∈ R(H). Thus
there is U ∈ U(H) such that x /∈ U . By Proposition 3.3(iii), there is n ∈ N such that ¬(xn) ∈ U . Hence

xn → 0 = xn−1 → (x → 0) = xn−1 → ¬x = xn−1 → 0 = · · · = x → 0 = 0.

Thus 0 ∈ U , which is a contradiction. Therefore, Ds(H) ⊆ R(H).
(ii) Suppose x

Ds(H) ∈
U

Ds(H) . Then there is y ∈ U such that x
Ds(H) =

y
Ds(H) , and so x → y, y → x ∈ Ds(H).

By (i), Ds(H) ⊆ R(H) ⊆ U . From y → x ∈ U , U ∈ F(H) and y ∈ U , we get x ∈ U . The proof of converse
is obvious.
(iii) Assume U ∈ F(H) such that Ds(H) ⊆ U . Then U ∈ U(H) iff for any deductive system of H such as F
such that U ⊆ F ⊆ H, we have U = F or H = F iff U

Ds(H) =
F

Ds(H) or H
Ds(H) =

F
Ds(H) iff U

Ds(H) ∈ U( H
Ds(H) ).

(iv)

R(
H

Ds(H)
) =

∩
i∈I

(
Ui

Ds(H)

)
=

∩
i∈I

Ui

Ds(H)
=

R(H)

Ds(H)
.
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(v) By (iii) and (iv), we have x
Ds(H) ∈ R(H)

Ds(H) = R( H
Ds(H) ) iff by (iv) for any U

Ds(H) ∈ U
(

H
Ds(H)

)
, x

Ds(H) ∈
U

Ds(H) iff for any U ∈ U(H), x ∈ U if and only if x ∈ R(H).
(vi) Define Ω : U(H) → U

(
H

Ds(H)

)
where Ω(U) = U

Ds(H) . Clearly Ω is an epimorphism. Consider
U1, U2 ∈ U(H). Then Ω(U1) = Ω(U2) iff U1

Ds(H) = U2

Ds(H) iff for any x ∈ U1, x
Ds(H) ∈ U1

Ds(H) iff there is
y ∈ U2 such that x

Ds(H) = y
Ds(H) iff by (i), x → y, y → x ∈ Ds(H) ⊆ R(H) ⊆ U2. Then y → x ∈ U2.

Since U2 ∈ F(H) and y ∈ U2, we obtain x ∈ U2 and so U1 ⊆ U2. In addition, from U1, U2 ∈ U(H), we have
U1 = U2. Hence, Ω is an isomorphism. For proving being topological space we use the definition of Zarisky
topology. It means that the open sets of this topology are like T (a) = {U ∈ Max(H) | a /∈ U}. Thus

SUltra(
x

Ds(H)
) = { U

Ds(H)
| U ∈ U(H),

x

Ds(H)
/∈ U

Ds(H)
}

= { U

Ds(H)
| U ∈ U(H), x /∈ U}

= { U

Ds(H)
| U ∈ SUltra(x)}

= {Ω(U) | U ∈ SUltra(x)}.

Thus the image of any open set is an open set. Clearly Ω is surjective and so Ω−1( U
Ds(H) ) = U or

Ω−1(SUltra(
x

Ds(H) )) = SUltra(x). Therefore, U(H) and U( H
Ds(H) ) are homeomorphic topological space.

(vii) The proof is straightforward.

In the following proposition we investigate some conditions for finding the relation between R(H),
Nil(H) and Inf(H).

Proposition 3.31. (i) R(H) = Inf(H) iff for any x, y ∈ H, x ⊙ y ∈ Nil(H) implies x ∈ Nil(H) or
y ∈ Nil(H).
(ii) If H is a chain, then x /∈ R(H) iff x ∈ Nil(H).
(iii) If H is a chain, then R(H) = Inf(H).
(iv) If H is a chain, then x ∈ Nil(H) iff x

R(H) ∈ Nil( H
R(H) ).

(v) ¬(xn) ∈ Nil(H) iff x /∈ Nil(H).
(vi) If H is a chain, then ¬(xn) ∈ Nil(H) implies x ∈ R(H).
(vii) Ds(H) ⊆ {x ∈ H | ¬(xn) ∈ Nil(H)}.
(viii) If H is a chain and ¬(xn) ∈ Nil(H), then ¬x < x.

Proof. (i) By Proposition 3.15, the proof is clear.
(ii) If x ∈ Nil(H) and x ∈ R(H), then there is n ∈ N such that xn = 0 and xn ∈ R(H), which is a
contradiction. Thus x /∈ R(H). Now, suppose x /∈ R(H). Then there is U ∈ U(H) such that x /∈ U . Then
by Proposition 3.3(iii), there is n ∈ N such that ¬(xn) ∈ U . Since H is a chain, we have x ≤ ¬(xn) or
¬(xn) ≤ x. If ¬(xn) ≤ x, then since ¬(xn) ∈ U , we get x ∈ U , a contradiction. Thus x ≤ ¬(xn), and so
xn+1 = 0. Hence, x ∈ Nil(H).
(iii) By Proposition 3.13, obviously R(H) ⊆ Inf(H). Assume x ∈ Inf(H) where x /∈ R(H). As H is a
chain, by (ii), x ∈ Nil(H), a contradiction. Hence, Inf(H) ⊆ R(H), and so R(H) = Inf(H).
(iv) Consider x ∈ Nil(H). Then there is n ∈ N such that xn = 0. Thus 0 → xn = xn → 0 = 1 ∈ R(H) and
so

(
x

R(H)

)n

= xn

R(H) =
0

R(H) . Hence, x
R(H) ∈ Nil( H

R(H) ).
Conversely, assume x

R(H) ∈ Nil( H
R(H) ). Then there is m ∈ N such that xm

R(H) = 0
R(H) . Thus ¬(xm) ∈

R(H). If x ∈ R(H), then for any m ∈ N, xm ∈ R(H), and so 0 ∈ R(H), a contradiction, since R(H) ∈ F(H).
Thus x /∈ R(H), and by (ii) x ∈ Nil(H).
(v) (⇒) Suppose ¬(xn) ∈ Nil(H). Then there exists m ∈ N such that (¬(xn))m = 0. If x ∈ Nil(H), then
there is n ∈ N where xn = 0 and ¬(xn) = 1. Thus for any m ∈ N, we have (¬(xn))m = 1 ̸= 0, which is a
contradiction. Hence, x /∈ Nil(H). The proof of other side is similar.
(vi) Consider H is a chain such that ¬(xn) ∈ Nil(H). Then by (v) we get x /∈ Nil(H). Thus by (ii), we
obtain x ∈ R(H).
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(vii) Assume x ∈ Ds(H). Then ¬x = 0. We prove that for m ∈ N, (¬(xn))m = 0. For this, since ¬x = 0,
we have

¬(xn) = xn → 0 = xn−1 → (x → 0) = xn−1 → 0 = · · · = x → 0 = ¬x = 0. (1)

Thus by (1), we consequence

(¬(xn))m → 0 =
(
(¬(xn))m−1 ⊙ (¬(xn))

)
→ 0 = (¬(xn))m−1 → ((¬(xn)) → 0)

= (¬(xn))m → (0 → 0) = (¬(xn))m → 1

= 1.

Thus (¬(xn))m = 0. Hence, ¬(xn) ∈ Nil(H).
(viii) Since H is a chain, we have x ≤ ¬x or ¬x ≤ x. If x ≤ ¬x, since ¬(xn) ∈ Nil(H), by (v) we obtain
x /∈ Nil(H), then 1 = x → ¬x = x2 → 0. Thus x2 = 0, and so x ∈ Nil(H) which is a contradiction. Hence,
¬x ≤ x. Now, if x = ¬x, then

1 = x → ¬x = x → (x → 0) = x2 → 0.

Thus x2 = 0 and so x ∈ Nil(H). By (v) we have ¬(xn) /∈ Nil(H), a contradiction. Therefore, ¬x < x.

Theorem 3.32. H is local iff H = Nil(H)∪R(H) iff for any x, y ∈ H, x⊙y ∈ Nil(H) implies x ∈ Nil(H)
or y ∈ Nil(H).

Proof. Suppose x ∈ H. Then O(x) ≤ ∞ or O(x) = ∞. If O(x) ≤ ∞, then x ∈ Nil(H). If O(x) = ∞,
then x ∈ Inf(H). By Proposition 3.31(i), R(H) = Inf(H) iff for any x, y ∈ H, x ⊙ y ∈ Nil(H) implies
x ∈ Nil(H) or y ∈ Nil(H). Hence, x ∈ R(H), therefore, H = Nil(H) ∪ R(H). Now, suppose H is not
local. Then there exist U1, U2 ∈ U(H) and R(H) ⊆ U1, U2. Thus

H ⊆ Nil(H) ∪R(H) ⊆ Nil(H) ∪ U1 ⊆ H , H ⊆ Nil(H) ∪R(H) ⊆ Nil(H) ∪ U2 ⊆ H.

Thus Nil(H) ∪ U1 = Nil(H) ∪ U2. Since Nil(H) ∩ U1 = Nil(H) ∩ U2 = ∅, then U1 = U2, which is a
contradiction. Therefore, H is local.

Conversely, suppose H is local. Then there exists just one ultra deductive system such as U . Thus
R(H) = U . Clearly, Nil(H) ∪ R(H) ⊆ H. Conversely, suppose x ∈ H. If O(x) ≤ ∞, then x ∈ Nil(H).
If O(x) = ∞, then x ∈ Inf(H). Suppose x ∈ Inf(H) \ U . Thus x /∈ U . So U ⊆ ⟨U ∪ {x}⟩ ⊆ H.
Since U ∈ U(H), we get ⟨U ∪ {x}⟩ = H. On the other side, U ⊆ Inf(H) and x ∈ Inf(H), then
H = ⟨U ∪ {x}⟩ ⊆ Inf(H) and so 0 ∈ Inf(H), which is a contradiction. Therefore, Inf(H) = U and so
H = Nil(H) ∪R(H).

Proposition 3.33. Suppose F ∈ F(H) such that F ⊆ Ds(H). Then for any x, y ∈ H we have
(i) x

F = 0
F iff x = 0 and x

F ≤ ¬y
F iff x ≤ ¬y.

(ii) O(x) = O( x
F ).

(iii) Ds(HF ) = Ds(H)
F .

Proof. (i) Suppose x
F = 0

F . Then ¬x ∈ F . Since F ⊆ Ds(H) and x ≤ ¬¬x, we get ¬¬x = 0 and so x = 0.
The proof of converse is clear. Now, assume x

F ≤ ¬y
F . Then x → ¬y ∈ F . Since F ⊆ Ds(H), we obtain

¬(x⊙ y) = x → ¬y ∈ Ds(H) and so ¬¬(x⊙ y) = 0. As x⊙ y ≤ ¬¬(x⊙ y), then x⊙ y ≤ 0, so x ≤ ¬y. The
proof of converse is clear.
(ii) By (i), for all x ∈ H and n ∈ N, xn = 0 iff xn

F = 0
F . Thus O(x) = O( x

F ).
(iii) Assume x

F ∈ Ds(HF ) iff ¬( x
F ) = 0 iff ¬¬x = ¬x → 0 ∈ F ⊆ Ds(H). Thus ¬x = 0, and so x ∈ Ds(H).

Hence x
F ∈ Ds(H)

F . The proof of other side is similar.

Proposition 3.34. The hoop H is local iff H
Ds(H) is local.

Proof. Suppose H
Ds(H) is not local. Then U1

Ds(H) ,
U2

Ds(H) ∈ U( H
Ds(H) ). Since there is a one-to-one correspon-

dence between F(H) and F( H
Ds(H) ) which contain Ds(H), we have U1, U2 ∈ U(H), a contradiction.

The proof of converse is similar.
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Let f : H → K be a hoop homomorphism. Define f : H
Ds(H) →

K
Ds(K) such that for any x

Ds(H) ∈
H

Ds(H) ,
we have f

(
x

Ds(H)

)
= f(x)

Ds(K) . In the following we show f is well-defined. For this, suppose x
Ds(H) ,

y
Ds(H) ∈

H
Ds(H) we have x

Ds(H) = y
Ds(H) iff x → y, y → x ∈ Ds(H) iff ¬(x → y) = 0 and ¬(y → x) = 0 iff

f(¬(x → y)) = 0 and f(¬(y → x)) = 0 iff ¬(f(x) → f(y)) = 0 and ¬(f(y) → f(x)) = 0 iff f(x) →
f(y), f(y) → f(x) ∈ Ds(K) iff f(x)

Ds(K) =
f(y)

Ds(K) . Therefore, f is well-defined.
Moreover, we can see that the following diagram is commutative:

H K

H
Ds(H)

K
Ds(K)

f

πH πK

f

(2)

It means that πK ◦f = f ◦πH . As a consequence, we can define a functor T : Hoop → Hoop where for any
H ∈ Obj(Hoop), T(H) = H

Ds(H) ∈ Obj(Hoop) and for any f ∈ Mor(Hoop), T(f) = f ∈ Mor(Hoop).

Proposition 3.35. (i) If f is an epimorphism, then f is an epimorphism, too.
(ii) If f is one-to-one, then f is one-to-one, too.

Proof. (i) Assume y
Ds(K) ∈ K

Ds(K) . Since πK is an epimorphism, there is x ∈ K such that πK(x) = y
Ds(K) .

By hypothesis, f is an epimorphism, then there is z ∈ H, where f(z) = x. Thus (πK ◦ f)(z) = πK(f(z)) =
y

Ds(K) . Since Diagram (2) is commutative, we have (f ◦ πH)(z) = y
Ds(K) . Hence, f( z

Ds(H) ) = y
Ds(K) .

Therefore, f is an epimorphism.
(ii) Suppose x

Ds(H) ,
y

Ds(H) ∈
H

Ds(H) . Then

f(
x

Ds(H)
) = f(

y

Ds(H)
) ⇐⇒ f(x)

Ds(K)
=

f(y)

Ds(K)

⇐⇒ f(x) → f(y), f(y) → f(x) ∈ Ds(K)

⇐⇒ ¬ (f(x) → f(y)) = ¬ (f(y) → f(x)) = 0

⇐⇒ f(¬(x → y)) = f(¬(y → x)) = 0

⇐⇒ ¬(x → y) = ¬(y → x) = 0

⇐⇒ x → y, y → x ∈ Ds(H)

⇐⇒ x

Ds(H)
=

y

Ds(H)

Therefore, f is one-to-one.

By Proposition 3.30(i) we prove Ds(H) ⊆ R(H). Now, we show that the following diagram is commu-
tative:

H
H

Ds(H)

H
R(H)

πH

φH

ΨH

(3)

Let x ∈ H. Then we define φH and ΨH on H as follows:

φH

(
x

Ds(H)

)
=

x

R(H)
and ΨH(x) =

x

R(H)
.
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Clearly, φH and ΨH are well-defined and φH ◦ πH = ΨH . Obviously, φH is an epimorphism but not
one-to-one. Also, it is easy to see that ΨH is surjective if φH is surjective.

Proposition 3.36. Consider Ds(H) = R(H). Then φH is one-to-one.

Proof. Suppose φH

(
x

Ds(H)

)
= φH

(
y

Ds(H)

)
, for any x

Ds(H) ,
y

Ds(H) ∈ H
Ds(H) . Then x

R(H) = y
R(H) . Thus

x → y, y → x ∈ R(H) and by hypothesis x → y, y → x ∈ Ds(H), and so x
Ds(H) = y

Ds(H) . Hence, φH is
one-to-one.

As we see, we define Mv(H) = {x ∈ H | ¬(¬x) = x}. Clearly, 0, 1 ∈ Mv(H) and we can see that
Mv(H) is closed under →. For this, suppose x, y ∈ Mv(H). Then ¬(¬x) = x and ¬(¬y) = y. Thus

¬¬(x → y) = ¬¬(¬(¬x) → ¬(¬y)) = ¬¬¬(¬(¬x)⊙ ¬y) = ¬(¬(¬x)⊙ ¬y) = ¬(¬x) → ¬(¬y) = x → y.
(4)

Hence, x → y ∈ Mv(H).
Now, for any x, y ∈ Mv(H) we define the operations ⊙′ and →′ on Mv(H) by x⊙′ y = ¬¬(x⊙ y) and

x →′ y = x → y. Clearly, if Mv(H) = H, then all these operation concide with the operations ⊙ and → in
H.

Theorem 3.37. The algebraic structure (Mv(H),⊙′,→′, 0, 1) is a bounded hoop

Proof. Suppose x, y, z ∈ Mv(H). Then x →′ x = x → x = 1 and

x⊙′ (x →′ y) = ¬¬(x⊙ (x → y)) = ¬¬(y ⊙ (y → x)) = y ⊙′ (y →′ x)

Moreover,

(x⊙′ y) →′ z = (¬¬(x⊙ y)) → z = (¬¬(x⊙ y)) → ¬(¬z) = ¬z → ¬¬¬(x⊙ y)) = ¬z → ¬(x⊙ y)

= ¬z → (x → ¬y) = x → (¬z → ¬y) = x → (y → ¬(¬z)) = x → (y → z)

= x →′ (y →′ z)

Now, it is enough to prove (Mv(H),⊙′, 1) is a commutative monoid. For this, for any x, y, z ∈ Mv(H), we
have x⊙′ y = ¬¬(x⊙ y) = ¬¬(y ⊙ x) = y ⊙′ x and x⊙′ 1 = ¬¬(x⊙ 1) = ¬¬x = x, finally,

x⊙′ (y ⊙′ z) = ¬¬(x⊙ ¬¬(y ⊙ z)) = ¬ [(x⊙ ¬¬(y ⊙ z)) → 0] = ¬ [x → (¬¬(y ⊙ z) → 0)]

= ¬ [x → ¬(y ⊙ z)] = ¬ [x → (z → ¬y)] = ¬ [z → (x → ¬y)] = ¬ [z → ¬(x⊙ y)]

= ¬ [z → ¬¬¬(x⊙ y)] = ¬ [¬¬(x⊙ y) → ¬z] = ¬¬(¬¬(x⊙ y)⊙ z)

= (x⊙′ y)⊙′ z

Therefore, (Mv(H),⊙′,→′, 0, 1) is a bounded hoop.

Corollary 3.38. The algebraic structure (Mv(H),⊕,¬, 0, 1) is an MV-algebra, where for any x, y ∈ Mv(H),
¬x⊕ ¬y = ¬(x⊙′ y).

Proof. The proof is straightforward.

Theorem 3.39. Define the maping Θ : H
Ds(H) → Mv(H), where for any x

Ds(H) ∈ H
Ds(H) , we have

Θ( x
Ds(H) ) = ¬¬x. Then Θ is an isomorphism and the following diagram is commutative, where Υ(x) = ¬¬x,

for any x ∈ H.

H
H

Ds(H)

Mv(H)

π

Θ
Υ

(5)
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Proof. We have to attention that in this diagram we suppose Mv(H) = (Mv(H),⊙′,→′, 0, 1). Suppose
a

Ds(H) ,
b

Ds(H) ∈
H

Ds(H) . Then

Θ(
a

Ds(H)
⊙ b

Ds(H)
) = Θ(

a⊙ b

Ds(H)
) = ¬¬(a⊙ b) = ¬(a → ¬b) = ¬(a → ¬¬¬b) = ¬(¬¬b → ¬a)

= ¬(¬¬b → ¬¬¬a) = ¬¬(¬¬b⊙ ¬¬a) = ¬¬a⊙′ ¬¬b

= Θ(
a

Ds(H)
)⊙′ Θ(

b

Ds(H)
).

Also, by (4), we have

Θ(
a

Ds(H)
→ b

Ds(H)
) = Θ(

a → b

Ds(H)
) = ¬¬(a → b) = ¬¬a → ¬¬b = Θ(

a

Ds(H)
) → Θ(

b

Ds(H)
).

Hence, Θ is a hoop homomorphism. Moreover, a
Ds(H) ∈ kerΘ iff Θ( a

Ds(H) ) = 1
Ds(H) iff ¬¬a = 1 iff by

Proposition 2.1(vii), ¬a = ¬¬¬a = 0 iff a ∈ Ds(H) iff kerΘ = Ds(H). Hence kerΘ = { 1
Ds(H)}. Therefore,

Θ is monomorphism. Also, for any x ∈ Mv(H), since ¬¬x = x, we have Θ( x
Ds(H) ) = x. Thus, Θ is a hoop

isomorphism. Moreover, for any x ∈ H, Θ ◦ π(x) = Θ( x
Ds(H) ) = ¬¬x = Υ(x). Therefore, Θ ◦ π = Υ, and

so the diagram is commutative.

Corollary 3.40. R(Mv(H)) = R(H) ∩Mv(H).

Proof. By Diagram (5), we have

R(Mv(H)) = R(Θ(
H

Ds(H)
)) = Θ(R(

H

Ds(H)
)) = Θ(

R(H)

Ds(H)
) = Θ(π(R(H))) = Υ(R(H)) = ¬¬(R(H)).

(6)

Now, suppose y ∈ ¬¬(R(H)). Then there exists x ∈ R(H) such that ¬¬x = y. Since ¬¬y = ¬¬¬¬x =
¬¬x = y, we get y ∈ Mv(H). Also, since x ∈ R(H), by Proposition 3.30(vii) we obtain ¬¬x ∈ R(H), and
so y ∈ R(H). Hence, y ∈ R(H)∩Mv(H), and so ¬¬(R(H)) ⊆ R(H)∩Mv(H). On the other side, consider
x ∈ R(H) ∩ Mv(H). Then x ∈ R(H) and x ∈ Mv(H). Since x ∈ R(H), by Proposition 3.30(vii) we get
¬¬x ∈ R(H) and from x ∈ Mv(H) we have ¬¬x = x. Thus x ∈ ¬¬(R(H)), and so R(H) ∩ Mv(H) ⊆
¬¬(R(H)). Hence, R(H) ∩Mv(H) = ¬¬(R(H)). Therefore, by (6), R(Mv(H)) = R(H) ∩Mv(H).

4 Boolean elements in hoops
In this section, we introduce the notion of Boolean elements and investigate some properties of them. Then
we study the relation among Boolean elements with ultra deductive systems and nilpotent elements. Finally,
we introduce a functor between the category of hoops and category of Boolean elements of them.

Definition 4.1. Consider H is a ∨-hoop. Then e ∈ H is said to be a Boolean element if e ∨ ¬e = 1 and
e ∧ ¬e = 0. All Boolean elements of H is showed by Bo(H).

Example 4.2. Let H be the hoop as in Example 3.9. Obviously, H is a ∨-hoop and Bo(H) = {0, a, d, 1}.

Proposition 4.3. If H is a ∨-hoop, then e ∈ Bo(H) implies e = e2, e = ¬(¬e) and ¬e → e = e.

Proof. Suppose e ∈ Bo(H). By Proposition 2.1(ii), e2 ≤ e. Since e ∈ Bo(H), we have e ∨ ¬e = 1. Then

e → e2 = (1⊙ e) → e2 = ((e ∨ ¬e)⊙ e) → e2.

By Proposition 2.1(vi) and (vii),

((e ∨ ¬e)⊙ e) → e2 = ((e⊙ e) ∨ (¬e⊙ e)) → e2 = e2 → e2 = 1.
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Hence, e ≤ e2, and so e = e2. Now, we prove e = ¬(¬e). For this, by Proposition 2.1(vii), e ≤ ¬(¬e). Since
e ∈ Bo(H), we have e ∨ ¬e = 1, then by Proposition 2.1(vi) and (vii),

¬(¬e) → e = ((e ∨ ¬e)⊙ ¬(¬e)) → e = ((e⊙ ¬(¬e)) ∨ (¬e⊙ ¬(¬e))) → e = (e⊙ ¬(¬e)) → e.

Thus, by Proposition 2.1(ii), (e ⊙ ¬(¬e)) → e = 1. Hence, ¬(¬e) → e = 1, and so e = ¬(¬e). Finally, for
proving ¬e → e = e, by Proposition 2.1(vii), we have e ≤ ¬e → e. It is enough to prove ¬e → e ≤ e. For
this, since e ∈ Bo(H), we get ¬e ∈ Bo(H). In addition, e = ¬(¬e) and e2 = e, so we consequence that

(¬e → e) → e = (¬e → ¬(¬e)) → ¬(¬e) = ¬(¬e⊙ ¬e) → ¬(¬e) = ¬(¬e) → ¬(¬e) = 1.

Thus, ¬e → e = e.

Proposition 4.4. Let H be a ∨-hoop. For any e, f ∈ Bo(H) and x, y ∈ H we have:
(i) if e ≤ x, then ¬e → x = x.
(ii) e → x = e → (e → x).
(iii) e → (x → y) = (e → x) → (e → y).
(iv) ¬e → x = e ∨ x.

Proof. (i) Suppose e ≤ x. Clearly x ≤ ¬e → x. Conversely, by Proposition 2.1(vi),

x = 1 → x = (e ∨ ¬e) → x = (e → x) ∧ (¬e → x) = ¬e → x.

(ii) Since e ∈ Bo(H), by Proposition 4.3, e2 = e. Then e → x = (e⊙ e) → x = e → (e → x).
(iii) Since x ≤ e → x, by Proposition 2.1(iii), we have (e → x) → y ≤ x → y and so e → ((e → x) →
y) ≤ e → (x → y). Hence, (e → x) → (e → y) ≤ e → (x → y). Conversely, by Proposition 2.1(iv), we get
x → y ≤ (e → x) → (e → y). Then by (ii)

e → (x → y) ≤ e → ((e → x) → (e → y))

= (e → x) → (e → (e → y))

= (e → x) → (e2 → y)

= (e → x) → (e → y).

Therefore, e → (x → y) = (e → x) → (e → y).
(iv) By Proposition 2.1(vii), we have e ≤ ¬e → x and x ≤ ¬e → x. Thus x ∨ e ≤ ¬e → x. Now, consider
there is z ∈ H such that x, e ≤ z. We prove ¬e → x ≤ z. For this, since e, x ≤ z, by (i) and (iii) we have

(¬e → x) → z = (¬e → x) → (¬e → z) = ¬e → (x → z) = ¬e → 1 = 1.

So (¬e → x) ≤ z. Hence, ¬e → x = e ∨ x.

Proposition 4.5. Let H and Hi, where i ∈ I be ∨-hoops. Then the following statements hold:
(i) Bo(H) ∩Ds(H) = R(H) ∩Bo(H) = {1}.
(ii) Bo(H) ∩Nil(H) = {0}.
(iii) Bo(

∏
i∈I

Hi) =
∏
i∈I

Bo(Hi).

(iv) For any e ∈ Bo(H), ⟨e⟩ = {x ∈ H | e ≤ x}.
(v) For any e, f ∈ Bo(H), e⊙ f = e ∧ f ∈ Bo(H) and e → f = ¬e ∨ f ∈ Bo(H).

Proof. By Proposition 4.4, the proof of (iii) and (iv) is clear.
(i) Obviously, {1} ⊆ Bo(H) ∩ Ds(H). Suppose x ∈ Bo(H) ∩ Ds(H). Then by Proposition 4.3, since
x ∈ Bo(H), we have ¬¬x = x. Also, from x ∈ Ds(H), we have ¬x = 0 and so ¬¬x = 1. Thus x = 1.
Hence, Bo(H)∩Ds(H) ⊆ {1}. Therefore, Bo(H)∩Ds(H) = {1}. Moreover, clearly, {1} ⊆ R(H)∩Bo(H).
Suppose x ∈ R(H) ∩ Bo(H). From x ∈ R(H), by Proposition 3.29, we have for any n ∈ N, there exists
k ∈ N such that (¬xn)k = 0. Since x ∈ Bo(H) we get x2 = x and ¬x ∈ Bo(H). Thus ¬x = 0 and so
x = ¬¬x = 1. Hence R(H) ∩Bo(H) ⊆ {1}. Therefore, R(H) ∩Bo(H) = {1}.
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(ii) Clearly {0} ⊆ Bo(H) ∩ Nil(H). Consider x ∈ Bo(H) ∩ Nil(H). Then x ∈ Bo(H) and x ∈ Nil(H),
so x2 = x and there is n ∈ N such that xn = 0, respectively. Thus xn = x and so x = 0. Therefore,
Bo(H) ∩Nil(H) = {0}.
(v) Suppose e, f ∈ Bo(H). Since ¬e ≤ e → f and f ≤ e → f , we get ¬e ∨ f ≤ e → f . On the other side,
from e, f ∈ Bo(H), by Proposition 4.3 we have ¬¬e = e and ¬¬f = f . Thus ¬e ∨ f = (f → ¬e) → ¬e.
Then

(e → f) → ((f → ¬e) → ¬e) = ((e → f)⊙ (f → ¬e)) → ¬e ≥ (e → ¬e) → ¬e = e ∨ ¬e = 1.

Hence, e → f ≤ ¬e ∨ f and so e → f = ¬e ∨ f . Also, by Propositions 4.4(iv) and 2.1(vi), we have

e ∧ f = e⊙ (e → f) = e⊙ (¬e ∨ f) = (e⊙ ¬e) ∨ (e⊙ f) = 0 ∨ (e⊙ f) = e⊙ f.

In addition, from ∨-hoop is a distributive lattice, we have

(e ∧ f) ∧ (¬e ∨ ¬f) = ((e ∧ f) ∧ ¬e) ∨ ((e ∧ f) ∧ ¬f) = 0,

(e ∧ f) ∨ (¬e ∨ ¬f) = ((e ∧ f) ∨ ¬e) ∨ ¬f = (f ∨ ¬e) ∨ ¬f = 1.

Therefore, e⊙ f = e ∧ f ∈ Bo(H) and by similar way e → f = ¬e ∨ f ∈ Bo(H).

Proposition 4.6. Consider H is a ∨-hoop. Then Bo(H) = Bo(Mv(H)).

Proof. Since Mv(H) ⊆ H, obviously Bo(Mv(H)) ⊆ Bo(H). Suppose x ∈ Bo(H). By Proposition 4.3 we
have ¬¬x = x and so x ∈ Mv(H). Thus x ∈ Bo(H) ∩Mv(H). Moreover, from ¬¬¬x = ¬x, we get ¬x ∈
Mv(H). Since x∧¬x = 0 and x∨¬x = 1 we have x ∈ Bo(Mv(H)). Therefore, Bo(H) = Bo(Mv(H)).

Proposition 4.7. If H is a local ∨-hoop, then Bo(H) = {0, 1} and H = Nil(H)∪{x ∈ H | ¬x ∈ Nil(H)}.

Proof. Consider x ∈ Bo(H) \ {0, 1}. Since x ∨ ¬x = 1, we obtain ¬x ∈ Bo(H). By assumption H is local,
thus it has just one ultra deductive system such as U such that ⟨x⟩ ⊆ U and ⟨¬x⟩ ⊆ U . Hence 0 ∈ U ,
a contradiction. Therefore, Bo(H) = {0, 1}. By Theorem 3.32, since H is local, we have H = Nil(H) ∪
R(H) = Nil(H) ∪ U , where U is the only ultra deductive system of H. Let B = {x ∈ H | ¬x ∈ Nil(H)}.
Suppose x ∈ U , then ¬x /∈ U , thus O(¬x) < ∞ and so ¬x ∈ Nil(H). Hence x ∈ B and so U ⊆ B. Thus
H = Nil(H) ∪ U ⊆ Nil(H) ∪B ⊆ H. Therefore, H = Nil(H) ∪ {x ∈ H | ¬x ∈ Nil(H)}.

Corollary 4.8. Let H be cyclic such that | H |= n+ 1. If H is ∨-hoop, then Bo(H) = {0, 1}.

Proof. By Theorem 3.20, H is a chain and by Proposition 4.7, Bo(H) = {0, 1}.

Now, we define another functor between the category of hoops and the category of Boolean elements of
them, where T : Hoop → Bool such that for any H ∈ Obj(Hoop), T(H) = Bo(H) ∈ Obj(Bool) and for
any f ∈ Mor(Hoop), T(f) = Bo(f) ∈ Mor(Bool).

Hence, according to Diagram (3), the next diagram in the category of Boolean algebras is commutative.

Bo(H) Bo
(

H
Ds(H)

)

Bo
(

H
R(H)

)

Bo (πH)

Bo (φH)
Bo (ΨH)

(7)

Proposition 4.9. Two homomorphism Bo (πH) and Bo (ΨH) are injective.
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Proof. Let x, y ∈ Bo(H). Then by Proposition 4.5(v), x → y, y → x ∈ Bo(H). In addition, Bo (ΨH) (x) =
Bo (ΨH) (y) iff x → y, y → x ∈ R(H) iff x → y, y → x ∈ Bo(H) ∩ R(H), by Proposition 4.5(i), Bo(H) ∩
R(H) = {1} iff x → y, y → x ∈ {1} iff x = y. Hence, Bo (ΨH) is injective. Also, by commutativity of
diagram, since Bo (φH) ◦Bo (πH) = Bo (ΨH) and we show Bo (ΨH) is injective and so Bo (πH) is injective,
too.

Proposition 4.10. (i) If Ds(H) = R(H), then Bo (ΨH) is surjective.
(ii) If Bo (ΨH) is surjective, then Bo (φH) is surjective.
Proof. (i) If Ds(H) = R(H), then Bo (φH) is an isomorphism. By commutativity of diagram, obviously
Bo (ΨH) is surjective.
(ii) Suppose Bo (ΨH) is surjective and y ∈ Bo( H

R(H) ). Then there exists x ∈ Bo(H) such that Bo (ΨH) (x) =

y. By commutativity of diagram, we have Bo (φH)◦Bo (πH) (x) = Bo (ΨH) (x) = y, and so Bo (φH) ( x
Ds(H) ) =

y. Therefore, Bo (φH) is surjective.

By considering Diagram (5), we affect the Boolean functor on this diagram as follows:

Bo(H) Bo
(

H
Ds(H)

)

Bo (Mv(H))

Bo(π)

Bo(Θ)
Bo(Υ)

By using these diagrams we make a new diagram as follows:

Bo(H)

Bo(Mv(H))

Bo
(

H
R(H)

)

Bo
(

H
Ds(H)

)

Bo (ΨH)

Bo (φH)
Bo(πH)

Bo (ΥH)

Bo (ΘH) (8)
Theorem 4.11. According to Diagram (8), Bo (ΨH) is surjective iff Bo (φH) is surjective.
Proof. (⇒) By Proposition 4.10(ii), the proof is clear.
(⇐) According to commutativity of Diagram (8), we prove that homomorphism Bo (ΥH) is an isomorphism.
For this, by Proposition 4.3, we know that for any x ∈ Bo(H), ¬¬x = x. Assume x, y ∈ Bo(H) such that
Bo (ΥH) (x) = Bo (ΥH) (y) and so ¬¬x = ¬¬y. Since x, y ∈ Bo(H) we have x = ¬¬x = ¬¬y = y.
Hence, Bo (ΥH) is injective. Now, suppose y ∈ Bo(Mv(H)). Clearly, Bo(Mv(H)) ⊆ Bo(H) ∩ Mv(H),
and so y ∈ Bo(H). Thus, y = ¬¬y = Bo (ΥH) (y). Hence, Bo (ΥH) is surjective. Also, Bo (ΘH) is an
isomorphism since by Theorem 3.26, Θ is an isomorphism. Then by commutativity of diagram we have
Bo(Θ) ◦ Bo(πH) = Bo (ΥH). Hence, Bo(πH) is an isomorphism and from Bo (φH) ◦ Bo(πH) = Bo (ΨH),
Bo (φH) is surjective and Bo(πH) is an isomorphism, we consequence that Bo (φH) is surjective.

Corollary 4.12. Bo (ΨH) is surjective iff Bo (φH) is an isomorphism.
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5 Conclusions and future works
In this paper, we define the concept of order and nilpotent element of H and we study some properties of
them. Then by using this notion, we introduce cyclic hoops and prove that every cyclic hoop has a unique
generator and is a local MV -algebra. Also, we introduce other notions such as dense and Boolean elements
on hoops and investigate some of their properties and relation between them. Then by using the notion of
Boolean element, we define a functor and prove some properties of hoop category.
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