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Abstract

In this paper, we study hyper vector spaces over Krasner
hyperfields. First, we introduce the notions of linearly
independence (dependence) and basis for a hyper vector
space. Second, we investigate their properties and prove
some results for hyper vector spaces that are similar to
that of vector spaces over fields. Then, we define linear
transformations over hyper vector spaces and investigate
their properties. Finally, we prove the dimension theorem
for linear transformations.
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A Title

1 Introduction

Algebraic hyperstructures represent a natural generalization of classical algebraic structures
and they were introduced by Marty [9] in 1934 at the eighth Congress of Scandinavian Mathe-
maticians. Where he generalized the notion of a group to that of a hypergroup. A hypergroup is a
non-empty set equipped with an associative hyperoperation and reproductive hyperoperation. In a
group, the composition of two elements is an element whereas in a hypergroup, the composition of
two elements is a non-empty set. Since then, many different kinds of hyperstructures (hyperring,
hypermodule, hypervector space, ...) were widely studied from the theoretical point of view and for
their applications to many subjects of pure and applied mathematics (see [3, 4, 5, 6, 11, 16, 17]).
There exist different kinds of hyperrings. A special case of this type is the hyperring introduced
by Krasner [8]. Also, Krasner introduced a new class of hyperrings and hyperfields: the quotient
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hyperrings and hyperfields. For more details about Krasner hyperrings we refer to [6, 8, 12]. Tallini
in [14, 15] introduced the notion of hyper vector spaces over fields and studied basic properties
of them. On the other hand, Vougiouklis [18] introduced weak hyper vector spaces, namely Hv-
vector spaces. Later Ameri et al. in [1] studied the properties of dimension of hypervector spaces
over fields and introduced the notions of linearly independent (respectively linearly dependent),
generator and basis of a hypervector space.

The remainder part of this paper is organized as follows: In Section 2, we present some defini-
tions related to hyperstructures that are used throughout the paper. In Section 3 we define hyper
vector spaces over Krasner hyperfields and introduce some definitions like linearly independence,
basis, . . . . Moreover, we investigate some properties of such spaces and prove that hyper vector
spaces have similar properties to that of vector spaces. In Section 4, we define linear transforma-
tions between hyper vector spaces and introduce some definitions like the kernel, range, . . . . Also,
we prove the Dimension theorem for linear transformations over hyper vector spaces.

2 Basic definitions

In this section, we present some definitions related to hyperstructures that are used throughout
the paper (see [5, 6]).

Let H be a non-empty set. Then, a mapping ◦ : H ×H → P∗(H) is called a binary hyperoper-
ation on H, where P∗(H) is the family of all non-empty subsets of H. The couple (H, ◦) is called
a hypergroupoid. In this definition, if A and B are two non-empty subsets of H and x ∈ H, then
we define A ◦B =

⋃
a∈A,b∈B a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}. A hypergroupoid (H, ◦) is

called: a semihypergroup if for every x, y, z ∈ H, we have x◦(y◦z) = (x◦y)◦z; a quasihypergroup if
for every x ∈ H, x◦H = H = H ◦x (this condition is called the reproduction axiom); a hypergroup
if it is a semihypergroup and a quasihypergroup. A Krasner hyperring is an algebraic structure
(R,+, ·) which satisfies the following axiom: (1) (R,+) is a commutative hypergroup; (2) there
exists 0 ∈ R such that 0 + x = {x} for all x ∈ R; (3) for every x ∈ R there exists unique x′ ∈ R
such that 0 ∈ x+ x′; (x′ is denoted by −x); (4) z ∈ x+ y implies that y ∈ −x+ z and x ∈ z − y;
(5) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e., x · 0 = 0 · x = 0; (6)
the multiplication “·” is distributive with respect to the hyperoperation “+”. Note that every ring
is a Krasner hyperring. Different examples of Krasner hyperrings were constructed. We refer to
[2, 5]. Let (R,+, ·) be a Krasner hyperring and A be a non-empty subset of R. Then A is said to
be a subhyperring of R if (A,+, ·) is itself a hyperring. A subhyperring A of a Krasner hyperring
(R,+, ·) is a hyperideal of R if r · a ∈ A (a · r ∈ A) for all a ∈ A, r ∈ R. A commutative Krasner
hyperring (R,+, ·) with identity element “1” is a Krasner hyperfield if (R \ {0}, ·) is a group.

3 Dimension of hyper vector spaces

In [1], Ameri et al. defined hyper vector spaces as an abelian group over a field and investigated
their properties. In this section, we present a different definition for hyper vector spaces over
Krasner hyperfields, study their properties and present an example applying the new defined
notions.

Definition 3.1. Let F be a Krasner hyperfield. A canonical hypergroup (V,+) together with a map
· : F × V → V , is called a hyper vector space over F if for all a, b ∈ F and x, y ∈ V , the following
conditions hold: (1) a · (x+ y) = a · x+ a · y; (2) (a+ b) · x = a · x+ b · x; (3) a · (b · x) = (ab) · x;
(4) a · (−x) = (−a) · x = −(a · x); (5) x = 1 · x.
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Definition 3.2. Let F be a Krasner hyperfield. A canonical hypergroup (V,+) together with a
map · : F × V → V , is called a weak hyper vector space over F if for all a, b ∈ F and x, y ∈ V ,
the following conditions hold: (1) a · (x + y) ⊆ a · x + a · y; (2) (a + b) · x ⊆ a · x + b · x; (3)
a · (b · x) = (ab) · x; (4) a · (−x) = (−a) · x = −(a · x); (5) x = 1 · x.

Example 3.3. Let F be a Krasner hyperfield and X be the set of all n-tuples with entries from F .
Then, (1) F is trivially a hyper vector space over itself; (2) X is a weak hypervector space over F .

Next, we present a (non trivial) example of a hyper vector space.

Example 3.4. Let (F,+, ·) be a Krasner hyperfield, E be a non-empty set and FE be the set
of all functions from E to F . Then (FE ,⊕) is a hyper vector space over F . Where “⊕” and
? : F × FE −→ FE are defined as follows: For all f, g ∈ FE , k, x ∈ F ,

(f ⊕ g)(x) = f(x) + g(x) and (k ? f)(x) = k · f(x).

Throughout this section, F is a Krasner hyperfield, V is a hyper vector space over F ,“0” is the
zero of F and “0” is the zero of V .

Definition 3.5. Let F be a Krasner hyperfield and (V,+) be a (weak) hyper vector space over F .
A non-empty subset W ⊆ V is called subhyperspace of V if for all x, y ∈ W and a ∈ F , we have
(1) x− y ⊆W ; (2) a · x ∈W .

Proposition 3.6. Let F be a Krasner hyperfield and (V,+) be a hyper vector space over F . If
a ∈ F and x ∈ V then

(1) −0 = 0;

(2) −(−a) = a;

(3) a · 0 = 0;

(4) 0 · x = 0.

Proof. Let x ∈ V and a ∈ F .

• Proof of 1. Having that −0 = −0 + 0 and 0 ∈ −0 + 0 implies that −0 = 0.

• Proof of 2. The proof follows from having 0 ∈ −a+ a for all a ∈ F .

• Proof of 3. Since −0 = 0, it follows that a · 0 = a · (−0) = −a · 0. Having 0 ∈ a · 0− a · 0 =
a · (0− 0) = {a · 0} implies that a · 0 = 0.

• Proof of 4. Having 0 ∈ 0 · x− 0 · x = (0− 0) · x = {0 · x} implies that 0 · x = 0.

Proposition 3.7. Let F be a Krasner hyperfield and (V,+) be a hyper vector space over F . A
non-empty subset W ⊆ V is subhyperspace of V if and only if a · x + b · y ⊆ W for all x, y ∈ W
and a, b ∈ F .

Proof. Suppose that W is a subhyperspace of V . Then a · x ∈W and −b · y = (−b) · y ∈W for all
a, b ∈ F . Thus, a · x+ b · y = a · x− (−b · y) ⊆W .
Conversely, suppose that a · x+ b · y ⊆W . By setting b = 0, we get that {a · x} = a · x+ 0 · y ⊆W
and by setting a = 1, b = −1, we get that x− y ⊆W . Thus, W is a subhyperspace of V .
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Definition 3.8. A subset S = {v1, v2, · · · , vn} of a hypervector space V over a Krasner hyperfield
F is called linearly independent if c1, c2, · · · , cn ∈ F and 0 ∈ c1 · v1 + c2 · v2 + · · · + cn · vn then
c1 = c2 = · · · = cn = 0. A subset S of V is called linearly dependent if it is not linearly independent.

Remark 3.9. Let S = {v1, v2, · · · , vn} be a subset of a hypervector space V over a Krasner
hyperfield F . Then, by Proposition 3.6; 4., 0 ∈ c1 · v1 + c2 · v2 + · · · + cn · vn has at least one
solution; c1 = · · · = cn = 0.

Definition 3.10. Let S = {v1, v2, · · · , vn} be a subset of a hyper vector space V over a Krasner
hyperfield F and v ∈ V . v is said to be a linear combination of S (or v ∈ span(S)) if there exist
c1, c2, · · · , cn ∈ F such that v ∈ c1 · v1 + c2 · v2 + · · ·+ cn · vn.

In what follows and for simplicity, we write ax instead of a · x for all a ∈ F and x ∈ V .

Proposition 3.11. Let S = {v1, v2, · · · , vn} be a subset of a hyper vector space V over a Krasner
hyperfield F . Then S is linearly dependent if and only if one of its vectors is a linear combination
of the others.

Proof. Suppose that S = {v1, v2, · · · , vn} is linearly dependent. Then there exist c1, · · · , cn ∈ F
such that 0 ∈ c1v1 + · · ·+ cnvn and at least one ci 6= 0. We get now, by Proposition 3.6, that

0 = c−1i · 0 ∈ d1v1 + · · · di−1vi−1 + vi + di+1vi+1 + · · ·+ dnvn,

where dj = c−1i cj for all j = 1, · · · , n. The latter implies that there exists x ∈ d1v1 +
· · · di−1vi−1 + di+1vi+1 + · · · + dnvn such that 0 ∈ x + vi. Having vi ∈ −x + 0 = {−x} im-
plies that vi ∈ −d1v1 + · · · − di−1vi−1 − di+1vi+1 + · · · − dnvn.

Conversely, without loss of generality, suppose that vn ∈ c1 · v1 + · · · + cn−1 · vn−1. We have
that 0 ∈ vn − vn ⊆ c1v1 + · · ·+ cn−1vn−1 + (−1)vn. Thus, S is linearly dependent.

Proposition 3.12. Let V be a hyper vector space over a Krasner hyperfield F . Then

(1) a set with two vectors is linearly dependent if and only if one of them is a scalar multiple of
the other

(2) a set containing 0 is linearly dependent;

(3) a set with one vector (that is not the zero vector) is linearly independent.

Proof. The proof of 1. follows from Proposition 3.11.

• Proof of 2. This is clear by using Proposition 3.6, as 0 = 10.

• Proof of 3. Let S = {x} 6= {0} and c ∈ F . If 0 ∈ cx and c 6= 0 then 0 = c−10 = c−1(cx) =
x.

Definition 3.13. A subset S = {v1, v2, · · · , vn} of a hyper vector space V over a Krasner hyperfield
F is said to span V if for every vector v ∈ V , there exist c1, c2, · · · , cn ∈ F such that v ∈
c1 · v1 + c2 · v2 + · · ·+ cn · vn.

Definition 3.14. A subset S = {v1, v2, · · · , vn} of a hyper vector space V over a Krasner hyperfield
F is said to basis for V if it is linearly independent and it spans V . We say that V is finite
dimensional if it has a finite basis. Otherwise, it is called infinite dimensional.
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Proposition 3.15. Let V be a hyper vector space over a Krasner hyperfield F and S = {v1, v2, · · · , vn}
be a basis for V . Then every vector v ∈ V is uniquely represented as linear combination of vectors
in S.

Proof. Suppose that there exist ci, di ∈ F such that v ∈ c1v1 + · · ·+cnvn and v ∈ d1v1 + · · ·+dnvn.
Then 0 ∈ v−v ⊆ (c1−d1)v1 + · · ·+(cn−dn)vn. The latter implies that there exist ti ∈ ci−di such
that 0 ∈ t1v1 + · · ·+ tnvn. Since S is linearly independent, it follows that ti = 0 for all i = 1, · · · , n.
We get now that 0 ∈ ci − di for all i = 1, · · · , n. Having (V,+) a canonical hypergroup implies
that ci = di for all i = 1, · · · , n.

Theorem 3.16. Plus/Minus Theorem. Let S be a non empty subset of a hyper vector space
V over a Krasner hyperfield F .

(1) If S is linearly independent and v ∈ V is not in span of S then S∪{v} is linearly independent;

(2) If there exist a vector v ∈ S such that v is linear combination of other vectors in S then
S − {v} and S span the same space.

Proof. Let S = {v1, · · · , vn}.

• Proof of 1. Let 0 ∈ c1v1 + · · · cnvn + cn+1v. Then cn+1 = 0, otherwise v ∈ span(S).
The latter implies that 0 ∈ c1v1 + · · · cnvn. The linearly independence of S asserts that
c1 = · · · = cn = 0.

• Proof of 2. Let w ∈ span(S). Then there exist d1, · · · , dn ∈ F such that w ∈ d1v1 + · · · dnvn.
Without loss of generality, let vn be a linear combination of other vectors in S. Then there
exist c1, · · · , cn−1 ∈ F such that w ∈ d1v1 + · · · + dn−1vn−1 + dn(c1v1 + · · · cn−1vn−1) =
(d1 + c1dn)v1 + · · ·+ (dn−1 + cn−1dn)vn−1. The latter implies that w ∈ span(S − {vn}).

Proposition 3.17. Let V be a hyper vector space over a Krasner hyperfield F , n ∈ N and Wi be
a subhyperspace of V for i = 1, . . . , n. Then

(1) {0} and V are subhyperspaces of V ;

(2) W1 ∩W2 is a subhyperspace of V ;

(3) W1 +W2 = {x+ y : x ∈W1, y ∈W2} is a subhyperspace of V ;

(4)
n⋂

i=1
Wi is a subhyperspace of V ;

(5)
n∑

i=1
Wi is a subhyperspace of V .

Proof. The proof is straightforward.

Example 3.18. Let F2 = {0, 1} and define (F2,+) and (F2, ·) by the following tables:

+ 0 1

0 0 1

1 1 F2

· 0 1

0 0 0

1 0 1
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Define the map � : F2 × F 3
2 → F 3

2 as:

a� (x, y, z) = (a · x, a · y, a · z)

for all a, x, y, z ∈ F2.
It is clear that F 3

2 is a weak hyper vector space over the Krasner hyperfield F2. Define the
subhyperspaces W1,W2 as

W1 = {(0, 0, 0), (0, 1, 0)} and W2 = {(0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1)}.

One can easily see that W1 ∪W2 = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1)} is not a subhyper-
space of F 3

2 .

Proposition 3.19. Let V be a (weak) hyper vector space over a Krasner hyperfield F and W1,W2

be subhyperspaces of V . Then W1 ∪ W2 is a subhyperspace of V if and only if W1 ⊆ W2 or
W2 ⊆W1.

Proof. If W1 ⊆W2 or W2 ⊆W1 then it is clear that W1 ∪W2 is a subhyperspaces of V .
Let W1 ∪W2 be a subhyperspaces of V . Suppose that W1 * W2 and W2 * W1. Then there are
x, y ∈ V such that x ∈ W1, y ∈ W2, x is not in W2 and y not in W1. Having x + y ⊆ W1 ∪W2

implies that for all z ∈ x+ y we have z ∈W1 ∪W2. Without loss of generality, let z ∈W1. Having
z ∈ x+ y implies that y ∈ z − x ⊆W1. The latter implies contradiction.

Definition 3.20. Let V be a hyper vector space over a Krasner hyperfield F and S ⊆ V . We
define L(S) as follows:

L(S) =
{
t ∈ V : t ∈

n∑
i=1

aisi, ai ∈ F, si ∈ S, n ∈ N
}
.

Proposition 3.21. Let V be a hyper vector space over a Krasner hyperfield F and S ⊆ V . Then
L(S) is the smallest subhyperspace of V containing S.

Proof. Having s = 1 · s ∈ L(S) for all s ∈ S implies that S ⊆ L(S).
Let x, y ∈ L(S) and a, b ∈ F . Since c0 = 0 and 0 + x = x for all c ∈ F, x ∈ V then we can write
ax+ by as follows:

ax+ by = a
n∑

i=1
aisi + b

m∑
i=1

bisi =
max(m,n)∑

i=1
(aai + bbi)si ⊆ L(S).

Thus, L(S) is a subhyperspace of V . Let W be a subhyperspace of V containing S. Then
n∑

i=1
aisi ⊆W for all si ∈ S ⊆W and ai ∈ F . Thus, L(S) ⊆W .

Proposition 3.22. Let V be a hyper vector space over a Krasner hyperfield F and W1,W2 be
subhyperspaces of V . Then L(W1 ∪W2) = W1 +W2.

Proof. Let x ∈ W1 ∪W2. Then x ∈ W1 or x ∈ W2. Writing x as x = x + 0 or x = 0 + x implies
that W1 ∪W2 ⊆ W1 + W2. Propositions 3.17 and 3.21 assert that L(W1 ∪W2) ⊆ W1 + W2. For
every z ∈ W1 +W2, z ∈ x+ y for some x ∈ W1, y ∈ W2. The latter implies that x, y ∈ W1 ∪W2.
We get now that x+ y ⊆ L(W1 ∪W2). Thus, W1 +W2 ⊆ L(W1 ∪W2).

Proposition 3.23. Let W be a non trivial subhyperspace of V and S be a spanning set for W .
Then S contains a linearly independent set that spans W .
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Proof. Let S = {v1, · · · , vn} ⊆ W . Since every non zero vector in V is linearly independent and
S spans W 6= {0}, it follows that S contains a linearly independent subset S′ = {v1, · · · vk}. If S
is linearly independent, we are done. If not, remove the first vj such that vj ∈ span(S). Using
Plus/Minus Theorem, we get that S and S−{vj} span W . If S−{vj} is linearly independent, we
are done. If not, remove the first vr such that vr ∈ span(S − {vj}). Continuing on this pattern,
we get the required result.

Corollary 3.24. Let W be a subhyperspace of V and S be a spanning set for W . Then S contains
a basis for W .

Proof. Proposition 3.23 asserts that there exist a linearly independent subset of S that spans W .
Thus, S contains a basis for W .

Theorem 3.25. Let V be a hyper vector space of dimension n. Then every linearly independent
subset of V contains at most n elements.

Proof. The proof is similar to that of Theorem 3.2 in [1].

Corollary 3.26. Let B,B′ be two basis for a finite dimensional hyper vector space V . Then
|B| = |B′|.

Proof. Since B is a basis for V and B′ is linearly independent subset of V , it follows by using
Theorem 3.25 that |B′| ≤ |B|.

Since B′ is a basis for V and B is linearly independent subset of V , it follows by using Theorem
3.25 that |B| ≤ |B′|.

Lemma 3.27. Let V be a finite dimensional hyper vector space. Then every linearly independent
subset S of V is contained in a finite basis of V .

Proof. Let dim(V ) = n and |S| = k. Theorem 3.25 asserts that k ≤ n. If k = n then S is
a basis for V . Otherwise if S is not a basis of V then there exist v1 ∈ V such that v1 is not
in span(S). Thus, by Plus/Minus Theorem, S ∪ {v1} is linearly independent set. The latter
contradicts Theorem 3.25. If k < n, then there exists v1 ∈ V such that v1 is not in span(S). By
Plus/Minus Theorem, we get that S ∪ {v1} is linearly independent. Again if |S ∪ {v1}| = n then
S ∪ {v1} is a basis for V . Otherwise, |S ∪ {v1}| = k + 1 < n and there exist v2 ∈ V such that v2
is not in span(S ∪ {v1}). Thus, by Plus/Minus Theorem, S ∪ {v1, v2} is linearly independent set.
Continuing on this pattern, we get that S ∪ {v1, · · · , vn−k} is a linearly independent set. Since
|S ∪ {v1, · · · , vn−k}| = n = dim(V ), it follows that S ∪ {v1, · · · , vn−k} is a basis for V containing
S.

Lemma 3.28. Let V be a finite dimensional hyper vector space and W be a subhyperspace of V .
Then dimension of W ≤ dimension of V .

Proof. Let dim(W ) = k. Then there exists a basis S for W such that |S| = k. Having S a linearly
independent set in V implies, by Theorem 3.25, that k ≤ dim(V ).

Let V be a hyper vector space over F and W be a subhyperspace of V . Define V/W = {v+W :
v ∈ V with the hyperoperation: (x+W )⊕(y+W ) = (x+y)+W , and define ? : F ×V/W → V/W
as follows: a ? (x+W ) = a · x+W .

Proposition 3.29. V/W is a hyper vector space over F .
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Lemma 3.30. Let V be a finite dimensional hyper vector space and W be a subhyperspace of V .
Then dimension of V/W= dimension of V - dimension of W .

Proof. Let S = {w1, · · · , wk} be a basis for W and dim(V ) = n. Then, by Lemma 3.27, S
is contained in a basis B = {w1, · · · , wk, vk+1, · · · , vn} for V . If x ∈ V/W then there exists
v ∈ V such that x = v + W . Having B a basis for V and v ∈ V implies that there exist
c1, · · · , cn such that x = v+W ∈ (c1w1 + · · ·+ ckwk + ck+1vk+1 + · · ·+ cnvn) +W = (ck+1vk+1) +
W + · · · + (cnvn + W ) = ck+1 ? (vk+1 + W ) + · · · + cn ? (vn + W ). The latter implies that
{vk+1+W, · · · , vn+W} spans V/W . To prove that {vk+1+W, · · · , vn+W} is linearly independent,
let 0 +W ∈ ck+1 ? (vk+1 +W ) + · · ·+ cn ? (vn +W ) = (ck+1vk+1 + · · ·+ cnvn) +W . Then there
exists z ∈W with z ∈ ck+1vk+1 + · · ·+cnvn. Having z ∈W implies that there exist d1, · · · , dk ∈ F
such that z ∈ d1w1 + · · ·+dkwk. We get now 0 ∈ z−z ⊆ d1w1 + · · ·+dkwk−ck+1vk+1−· · ·−cnvn.
Since B is linearly independent, it follows that d1 = · · · = dk = ck+1 = · · · = cn = 0.

Next, we present an example on a finite dimensional hyper vector space.

Example 3.31. Let E = {a, b}, K = {0, 1, 2} and define (K,+) and (K, ·) by the following tables:

+ 0 1 2

0 0 1 2

1 1 1 K

2 2 K 2

· 0 1 2

0 0 0 0

1 0 1 2

1 0 2 2

Define 0, f, g : E −→ K as follows:

0(a) = 0(b) = 0, f(a) = 0, f(b) = 1, g(a) = 1 and g(b) = 0.

One can easily see the following:

(1) K is a Krasner hyperfield,

(2) KE = {0, f, g, 2f, f + g, 2f + g, 2g, f + 2g, 2f + 2g},

(3) B = {f, g} is a basis for KE,

(4) W1 = {{0, f, 2f},W2 = {{0, g, 2g} are non-trivial subhyperspaces of KE of dimension 1.

4 Linear transformations

In this section, we define linear transformations between hyper vector spaces and investigate
their properties. Moreover, we prove the Dimension theorem for linear transformations over hyper
vector spaces.

Throughout this section, F is a Krasner hyperfield, U, V are hyper vector spaces, and we denote
by “0” the zero of F , by “0” the zero of U and by “0” the zero of V .

Definition 4.1. Let U, V be two hyper vector spaces over a Krasner hyperfield F and T : U → V .
Then T is a linear transformation if for all x, y ∈ U and a ∈ F : (1) T (x+ y) = T (x) + T (y); (2)
T (ax) = aT (x).
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Proposition 4.2. Let U, V be two hyper vector spaces over a Krasner hyperfield F and T : U → V .
Then T is a linear transformation if and only if T (ax+ by) = aT (x) + bT (y) for all x, y ∈ U and
a, b ∈ F :

Proof. The proof is straightforward.

Proposition 4.3. Let T : U → V be a linear transformation. Then for all x ∈ U :

(1) T (0) = T (0);

(2) T (−x) = −T (x).

Proof. Let x ∈ U and y ∈ V . Then, by Proposition 3.6, 0x = 0 and 0y = 0.

• Proof of 1. T (0) = T (0x) = 0T (x) = 0.

• Proof of 2. Since 0 ∈ x − x, it follows that T (0) ∈ T (x − x) = T (−x) + T (x). Using 1., we
get that 0 ∈ T (−x) + T (x). Thus, T (−x) = −T (x).

Example 4.4. Let U, V be two hyper vector spaces over a Krasner hyperfield F . Then the following
are linear transformations: (1) (Zero transformation) T : U → V defined by T (x) = 0 for all x ∈ U ;
(2) (Inclusion map) T : U → V defined by T (x) = x for all x ∈ U . Here, U is a subhyperspace
of V ; (3) T : U → V defined by T (x) = kx for all x ∈ U and a fixed k ∈ F . Here, U is a
subhyperspace of V .

Definition 4.5. Let T : U → V be a linear transformation. Then

(1) the kernel of T is defined as: ker(T ) = {x ∈ U : T (x) = 0};

(2) the range of T is defined as: R(T ) = {T (x) : x ∈ U}.

Example 4.6. Let T : V → V/W defined by T (x) = x + W . Then T is an onto linear transfor-
mation with W as its kernel.

Let T : U → V be any transformation. Then, T is one-to-one (1-1) if: T (x) = T (y) implies
x = y; T is onto if R(T ) = V ; T is an isomorphism if T is linear, one to one and onto.

Proposition 4.7. Let T : U → V be a linear transformation. Then T is one to one if and only if
ker(T ) = {0}.

Proof. Suppose that T is one to one and let x ∈ ker(T ). Using Proposition 4.3, we get that
T (x) = T (0) = 0. Having T one to one implies that x = 0.

For the converse, suppose that ker(T ) = {0} and let x, y ∈ U such that T (x) = T (y). Then
0 ∈ T (x) − T (y) = T (x − y). The latter implies that there exists z ∈ x − y such that T (z) = 0.
But ker(T ) = {0}, then z = 0. Since 0 ∈ x− y, it follows that x = y.

Proposition 4.8. Let T : U → V be a linear transformation. Then:

(1) ker(T ) is a subhyperspace of U ;

(2) R(T ) is a subhyperspace of V .

Proof. Suppose that a, b ∈ F .
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• Proof of 1. Let x, y ∈ ker(T ). Then T (ax + by) = aT (x) + bT (y) = a0 + b0 = 0. Thus,
ax+ by ⊆ ker(T ).

• Proof of 2. Let v1, v2 ∈ R(T ). Then there exist x, y ∈ U such that T (x) = v1, T (y) = v2.
Since T is a linear transformation, it follows that av1 + bv2 = aT (x) + bT (y) = T (ax+ by).
The latter implies that for every v ∈ av1 + bv2, there exist z ∈ ax+ by such that T (z) = v.
Thus, av1 + bv2 ⊆ R(T ).

Proposition 4.9. Let T : U → V be a linear transformation and X,W be subhyperspaces of U, V
respectively. Then

(1) T (X) = {T (x) : x ∈ U} is a subhyperspace of V ;

(2) T−1(W ) = {x ∈ U : T (x) ∈W} is a subhyperspace of U .

Proof. Let a, b ∈ F .

• Proof of 1. Let T (x), T (y) ∈ T (X) for some x, y ∈ X. Then aT (x) + bT (y) = T (ax + by).
Since X is a subhyperspace of U , it follows that ax+ by ⊆ X. Thus, aT (x) + bT (y) ⊆ T (X).

• Proof of 2. Let x, y ∈ T−1(W ). The there exist v, w ∈ W such that T (x) = v, T (y) = w.
Since av+bw ⊆W , it follows that T (ax+by) = av+bw ⊆W . Thus, ax+by ⊆ T−1(W ).

Proposition 4.10. Let T : U → V, J : V → W be linear transformations. Then the composition
of J and T , J ◦ T is a linear transformation. Moreover, if J, T are one to one then J ◦ T is one
to one.

Proof. The proof is straightforward.

Proposition 4.11. Let T : U → V be an isomorphism. Then T−1 is an isomorphism.

Proof. The proof is straightforward.

Proposition 4.12. Let T : U → V be a one to one linear transformation and S ⊆ U be a linearly
independent subset of U . Then T (S) is a linearly independent subset of V .

Proof. Let S = {u1, · · · , un} be a linearly independent subset of U . Suppose that 0 ∈ c1T (u1) +
· · ·+cnT (un). Then 0 ∈ T (c1u1+· · ·+cnun). The latter implies that there exist z ∈ c1u1+· · ·+cnun
such that T (z) = 0. Having T one to one implies that z = 0. We get now that 0 ∈ c1u1+· · ·+cnun.
The independency of S implies that c1 = · · · = cn = 0.

Theorem 4.13. Dimension Theorem. Let U be a finite dimensional hyper vector space and
T : U → V be a linear transformation. Then

dim(ker(T )) + dim(R(T )) = dim(U).

Proof. Let B = {u1, · · · , un} be a basis for U . Since ker(T ) is a subhyperspace of U , it follows
that dim(ker(T )) = k ≤ n. We consider the following cases:

Case k = 0. Since ker(T ) = {0} and B is a basis for U , it follows by Proposition 4.12 that
T (B) = {T (u1), · · · , T (un)} ⊆ R(T ) is linearly independent. Let w ∈ R(T ). Then there exists
u ∈ U such that w = T (u) ⊆ T (c1u1 + · · ·+ cnun) for some c1, · · · , cn ∈ F . The latter implies that
w ∈ c1T (u1) + · · ·+ cnT (un). Thus T (B) is a basis for R(T ) and hence, dim(R(T )) = n.
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Case k = n. Since ker(T ) has a basis S of n linearly independent elements, it follows that S is
a basis for U . Having T (S) = 0 and S a basis for U imply that T (U) = 0. Thus, dim(R(T )) = 0.

Case 0 < k < n. Let S = {s1, · · · .sk} be a basis for ker(T ). By Lemma 3.27, S is contained in
a basis B′ for U . Let B′ = {s1, · · · .sk, wk+1, · · · , wn} and v ∈ U . Then there exist c1, · · · , cn ∈ F
such that v ∈ c1s1+· · ·+cksk+ck+1wk+1+· · ·+cnwn. Having T a linear transformation implies that
T (v) ∈ T (c1s1+ · · ·+cksk+ck+1wk+1+ · · ·+cnwn) = c10+ · · ·+ck0+ck+1T (wk+1)+ · · ·+cnT (wn).
We get that T (v) ∈ ck+1T (wk+1) + · · · + cnT (wn). Thus, {T (wk+1), · · · , T (wn)} spans R(T ). To
prove that {T (wk+1), · · · , T (wn)} is linearly independent, let 0 ∈ c1T (wk+1) + · · · + cn−kT (wn).
Then 0 ∈ T (c1wk+1 + · · ·+cn−kwn). The latter implies that there exists u ∈ c1wk+1 + · · ·+cn−kwn

for some c1, · · · , cn−k ∈ F such that T (u) = 0. We get now that u ∈ ker(T ). The latter implies u ∈
d1s1+· · ·+dksk for some d1, · · · , dk ∈ F . Since 0 ∈ u−u ⊆ d1s1+· · ·+dksk−c1wk+1−· · ·−cn−kwn

and having B′ a basis for U , it follows that c1 = · · · = cn−k = −d1 = · · · = −dk = 0. Thus,
dim(R(T )) = n− k.

5 Conclusion

In this paper, we dealt with hyper vector spaces over Krasner hyperfields and linear transfor-
mations over them. We studied their properties, presented some results that are similar to that of
vector spaces.

For future work, it will be interesting to introduce a norm over hyper vector spaces and study
normed hyper vector spaces.
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