Commutative neutrosophic quadruple ideals of neutrosophic quadruple $B C K$-algebras

M. Mohseni Takallo ${ }^{1}$ and Y.B. Jun ${ }^{2}$
${ }^{1}$ Department of Mathematics, Shahid Beheshti University, Tehran, Iran
${ }^{2}$ Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea
mohammad.mohseni1122@gmail.com, skywine@gmail.com

Abstract

Commutative neutrosophic quadruple ideals and $B C K$ algebras are discussed, and related properties are investigated. Conditions for the neutrosophic quadruple $B C K$ algebra to be commutative are considered. Given subsets A and B of a neutrosophic quadruple $B C K$-algebra, conditions for the set $N Q(A, B)$ to be a commutative ideal of a neutrosophic quadruple $B C K$-algebra are provided.

Article Information

Corresponding Author: M. Mohseni Takallo; Received: December 2019; Accepted: January 2020. Paper type: Original.

Keywords:

$B C K$-algebra, ideal, neutrosophic quadruple ideal, commutative neutrosophic quadruple $B C K$-algebra.

1 Introduction

The neutrosophic set which is developed by Smarandache ([17], [18] and [19]) is a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set. Neutrosophic algebraic structures in $B C K / B C I$-algebras are discussed in the papers [3], [8] [9] [10], [11], [13], [16] and [21]. Smarandache [20] considered an entry (i.e., a number, an idea, an object etc.) which is represented by a known part (a) and an unknown part ($b T, c I, d F$) where T, I, F have their usual neutrosophic logic meanings and a, b, c, d are real or complex numbers, and then he introduced the concept of neutrosophic quadruple numbers. Neutrosophic quadruple algebraic structures and hyperstructures are discussed in [1, 2]. Jun et al. [12] used neutrosophic quadruple numbers based on a set, and constructed neutrosophic quadruple $B C K / B C I$-algebras. They investigated several properties, and considered ideal and positive

[^0]implicative ideal in neutrosophic quadruple $B C K$-algebra, and closed ideal in neutrosophic quadruple $B C I$-algebra. Given subsets A and B of a neutrosophic quadruple $B C K / B C I$-algebra, they considered sets $N Q(A, B)$ which consists of neutrosophic quadruple $B C K / B C I$-numbers with a condition. They provided conditions for the set $N Q(A, B)$ to be a (positive implicative) ideal of a neutrosophic quadruple $B C K$-algebra, and the set $N Q(A, B)$ to be a (closed) ideal of a neutrosophic quadruple $B C I$-algebra. They gave an example to show that the set $\{\tilde{0}\}$ is not a positive implicative ideal in a neutrosophic quadruple $B C K$-algebra, and then they considered conditions for the set $\{\tilde{0}\}$ to be a positive implicative ideal in a neutrosophic quadruple $B C K$-algebra.

In this paper, we discuss a commutative neutrosophic quadruple ideal and $B C K$-algebra and investigate several properties. We consider conditions for the neutrosophic quadruple $B C K$-algebra to be commutative. Given subsets A and B of a neutrosophic quadruple $B C K$-algebra, we give conditions for the set $N Q(A, B)$ to be a commutative ideal of a neutrosophic quadruple $B C K$ algebra.

2 Preliminaries

A $B C K / B C I$-algebra is an important class of logical algebras introduced by K. Iséki (see [6] and [7) and was extensively investigated by several researchers.

By a BCI-algebra, we mean a set X with a special element 0 and a binary operation $*$ that satisfies the following conditions:
(I) $(\forall x, y, z \in X)(((x * y) *(x * z)) *(z * y)=0)$,
(II) $(\forall x, y \in X)((x *(x * y)) * y=0)$,
(III) $(\forall x \in X)(x * x=0)$,
(IV) $(\forall x, y \in X)(x * y=0, y * x=0 \Rightarrow x=y)$.

If a $B C I$-algebra X satisfies the following identity:
(V) $(\forall x \in X)(0 * x=0)$,
then X is called a $B C K$-algebra. Any $B C K / B C I$-algebra X satisfies the following conditions:

$$
\begin{align*}
& (\forall x \in X)(x * 0=x) \tag{1}\\
& (\forall x, y, z \in X)(x \leq y \Rightarrow x * z \leq y * z, z * y \leq z * x), \tag{2}\\
& (\forall x, y, z \in X)((x * y) * z=(x * z) * y) \tag{3}\\
& (\forall x, y, z \in X)((x * z) *(y * z) \leq x * y) \tag{4}
\end{align*}
$$

where $x \leq y$ if and only if $x * y=0$.
A $B C K$-algebra X is said to be commutative if the following assertion is valid.

$$
\begin{equation*}
(\forall x, y \in X)(x *(x * y)=y *(y * x)) . \tag{5}
\end{equation*}
$$

A subset I of a $B C K / B C I$-algebra X is called an ideal of X if it satisfies:

$$
\begin{align*}
& 0 \in I, \tag{6}\\
& (\forall x \in X)(\forall y \in I)(x * y \in I \Rightarrow x \in I) . \tag{7}
\end{align*}
$$

A subset I of a $B C K$-algebra X is called a commutative ideal of X if it satisfies (6) and

$$
\begin{equation*}
(\forall x, y \in X)(\forall z \in I)((x * y) * z \in I \Rightarrow x *(y *(y * x)) \in I) \tag{8}
\end{equation*}
$$

Observe that every commutative ideal is an ideal, but the converse is not true (see [14]).
We refer the reader to the books [5, 14] for further information regarding $B C K / B C I$-algebras, and to the site "http://fs.gallup.unm.edu/neutrosophy.htm" for further information regarding neutrosophic set theory.

3 Commutative neutrosophic quadruple $B C K$-algebras

In this section, we define commutative neutrosophic quadruple $B C K$-algebra under Theorem 3.3 and consider some properties of commutative neutrosophic quadruple $B C K$-algebra. Also, we investigate relation between commutative neutrosophic quadruple $B C K$-algebra and lattices.

Definition $3.1([12])$. Let X be a set. A neutrosophic quadruple X-number is an ordered quadruple $(a, x T, y I, z F)$ where $a, x, y, z \in X$ and T, I, F have their usual neutrosophic logic meanings.

The set of all neutrosophic quadruple X-numbers is denoted by $N Q(X)$, that is,

$$
N Q(X):=\{(a, x T, y I, z F) \mid a, x, y, z \in X\}
$$

and it is called the neutrosophic quadruple set based on X. If X is a $B C K / B C I$-algebra, a neutrosophic quadruple X-number is called a neutrosophic quadruple $B C K / B C I$-number and we say that $N Q(X)$ is the neutrosophic quadruple $B C K / B C I$-set.

Let X be a $B C K / B C I$-algebra. We define a binary operation \odot on $N Q(X)$ by

$$
(a, x T, y I, z F) \odot(b, u T, v I, w F)=(a * b,(x * u) T,(y * v) I,(z * w) F)
$$

for all $(a, x T, y I, z F),(b, u T, v I, w F) \in N Q(X)$. Given $a_{1}, a_{2}, a_{3}, a_{4} \in X$, the neutrosophic quadruple $B C K / B C I$-number $\left(a_{1}, a_{2} T, a_{3} I, a_{4} F\right)$ is denoted by \tilde{a}, that is,

$$
\tilde{a}=\left(a_{1}, a_{2} T, a_{3} I, a_{4} F\right)
$$

and the zero neutrosophic quadruple $B C K / B C I$-number $(0,0 T, 0 I, 0 F)$ is denoted by $\tilde{0}$, that is,

$$
\tilde{0}=(0,0 T, 0 I, 0 F)
$$

We define an order relation "<" and the equality " $=$ " on $N Q(X)$ as follows:

$$
\begin{aligned}
& \tilde{x} \ll \tilde{y} \Leftrightarrow x_{i} \leq y_{i} \text { for } i=1,2,3,4 \\
& \tilde{x}=\tilde{y} \Leftrightarrow x_{i}=y_{i} \text { for } i=1,2,3,4
\end{aligned}
$$

for all $\tilde{x}, \tilde{y} \in N Q(X)$. It is easy to verify that "<<" is a partial order on $N Q(X)$.
Lemma $3.2([12])$. If X is a $B C K / B C I$-algebra, then $(N Q(X) ; \odot, \tilde{0})$ is a $B C K / B C I$-algebra, which is called a neutrosophic quadruple BCK/BCI-algebra.

Theorem 3.3. The neutrosophic quadruple $B C K$-set $N Q(X)$ based on a commutative BCKalgebra X is a commutative BCK-algebra, which is called a commutative neutrosophic quadruple BCK-algebra.

Proof. Let X be a commutative $B C K$-algebra. Then X is a $B C K$-algebra, and so $(N Q(X) ; \odot, \tilde{0})$ is a $B C K$-algebra by Lemma 3.2. Let $\tilde{x}, \tilde{y} \in N Q(X)$. Then

$$
x_{i} *\left(x_{i} * y_{i}\right)=y_{i} *\left(y_{i} * x_{i}\right)
$$

for all $i=1,2,3,4$ since $x_{i}, y_{i} \in X$ and X is a commutative $B C K$-algebra. Hence $\tilde{x} \odot(\tilde{x} \odot \tilde{y})=$ $\tilde{y} \odot(\tilde{y} \odot \tilde{x})$, and therefore $N Q(X)$ based on a commutative $B C K$-algebra X is a commutative $B C K$-algebra.

Theorem 3.3 is illustrated by the following example.
Example 3.4. Let $X=\{0,1\}$ be a set with the binary operation $*$ which is given in Table 1 .
Table 1: Cayley table for the binary operation "*"

Then $(X, *, 0)$ is a commutative BCK-algebra (see 14]), and the neutrosophic quadruple BCK-set $N Q(X)$ is given as follows:

$$
N Q(X)=\{\tilde{0}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}, \tilde{5}, \tilde{6}, \tilde{7}, \tilde{8}, \tilde{9}, \tilde{10}, \tilde{1}, \tilde{12}, \tilde{13}, \tilde{14}, \tilde{1}\}
$$

where

$$
\begin{aligned}
& \tilde{\tilde{0}}=(0,0 T, 0 I, 0 F), \tilde{1}=(0,0 T, 0 I, 1 F), \tilde{2}=(0,0 T, 1 I, 0 F), \tilde{3}=(0,0 T, 1 I, 1 F), \\
& \tilde{4}=(0,1 T, 0 I, 0 F), \tilde{5}=(0,1 T, 0 I, 1 F), \tilde{6}=(0,1 T, 1 I, 0 F), \tilde{7}=(0,1 T, 1 I, 1 F), \\
& \tilde{8}=(1,0 T, 0 I, 0 F), \tilde{9}=(1,0 T, 0 I, 1 F), \tilde{10}=(1,0 T, 1 I, 0 F), \tilde{1}=(1,0 T, 1 I, 1 F), \\
& \tilde{12}=(1,1 T, 0 I, 0 F), \tilde{1}=(1,1 T, 0 I, 1 F), \tilde{14}=(1,1 T, 1 I, 0 F), \tilde{15}=(1,1 T, 1 I, 1 F) .
\end{aligned}
$$

Then $(N Q(X), \odot, \tilde{0})$ is a commutative BCK-algebra in which the operation \odot is given by Table 2 .

Table 2: Cayley table for the binary operation " \odot "

\odot	0	$\tilde{1}$	$\tilde{2}$	$\tilde{3}$	$\tilde{4}$	$\tilde{5}$	$\tilde{6}$	$\tilde{7}$	$\tilde{8}$	$\tilde{9}$	10	$\tilde{1} 1$	$1 \tilde{1}$	$\tilde{13}$	$\tilde{14}$	$\tilde{1} 5$
0	$\tilde{0}$															
$\tilde{1}$	$\tilde{1}$	$\tilde{0}$														
$\tilde{2}$	$\tilde{2}$	$\tilde{2}$	$\tilde{0}$	$\tilde{0}$												
$\tilde{3}$	$\tilde{3}$	$\tilde{2}$	$\tilde{1}$	$\tilde{0}$												
$\tilde{4}$	$\tilde{4}$	$\tilde{4}$	$\tilde{4}$	$\tilde{4}$	$\tilde{0}$	$\tilde{0}$	$\tilde{0}$	$\tilde{0}$	$\tilde{4}$	$\tilde{4}$	$\tilde{4}$	$\tilde{4}$	$\tilde{0}$	$\tilde{0}$	$\tilde{0}$	$\tilde{0}$
$\tilde{5}$	$\tilde{5}$	$\tilde{4}$	$\tilde{5}$	$\tilde{4}$	$\tilde{1}$	$\tilde{0}$	$\tilde{1}$	$\tilde{0}$	$\tilde{5}$	$\tilde{4}$	$\tilde{5}$	$\tilde{4}$	$\tilde{1}$	$\tilde{0}$	$\tilde{1}$	$\tilde{0}$
$\tilde{6}$	$\tilde{6}$	$\tilde{6}$	$\tilde{4}$	$\tilde{4}$	$\tilde{2}$	$\tilde{2}$	$\tilde{0}$	$\tilde{0}$	$\tilde{6}$	$\tilde{6}$	$\tilde{4}$	$\tilde{4}$	$\tilde{2}$	$\tilde{2}$	$\tilde{0}$	$\tilde{0}$
$\tilde{7}$	$\tilde{7}$	$\tilde{6}$	$\tilde{5}$	$\tilde{4}$	$\tilde{3}$	$\tilde{2}$	$\tilde{1}$	$\tilde{0}$	$\tilde{7}$	$\tilde{6}$	$\tilde{5}$	$\tilde{4}$	$\tilde{3}$	$\tilde{2}$	$\tilde{1}$	$\tilde{0}$
$\tilde{8}$	$\tilde{0}$															
$\tilde{9}$	$\tilde{9}$	$\tilde{8}$	$\tilde{8}$	$\tilde{8}$	$\tilde{9}$	$\tilde{8}$	$\tilde{9}$	$\tilde{8}$	$\tilde{9}$	$\tilde{0}$	$\tilde{1}$	$\tilde{0}$	$\tilde{1}$	$\tilde{0}$	$\tilde{1}$	$\tilde{0}$
$\tilde{10}$	$\tilde{10}$	$\tilde{10}$	$\tilde{8}$	$\tilde{8}$	$\tilde{10}$	$\tilde{10}$	$\tilde{8}$	$\tilde{8}$	$\tilde{2}$	$\tilde{2}$	$\tilde{0}$	$\tilde{2}$	$\tilde{2}$	$\tilde{2}$	$\tilde{0}$	$\tilde{0}$
$\tilde{11}$	$\tilde{11}$	$\tilde{10}$	$\tilde{9}$	$\tilde{8}$	$\tilde{11}$	$\tilde{10}$	$\tilde{9}$	$\tilde{8}$	$\tilde{3}$	$\tilde{2}$	$\tilde{1}$	$\tilde{0}$	$\tilde{3}$	$\tilde{2}$	$\tilde{1}$	$\tilde{0}$
$\tilde{12}$	$\tilde{12}$	$\tilde{12}$	$\tilde{12}$	$\tilde{12}$	$\tilde{8}$	$\tilde{8}$	$\tilde{8}$	$\tilde{8}$	$\tilde{4}$	$\tilde{4}$	$\tilde{4}$	$\tilde{4}$	$\tilde{0}$	$\tilde{0}$	$\tilde{0}$	$\tilde{0}$
$\tilde{13}$	$\tilde{13}$	$\tilde{12}$	$\tilde{13}$	$\tilde{12}$	$\tilde{9}$	$\tilde{8}$	$\tilde{9}$	$\tilde{8}$	$\tilde{5}$	$\tilde{4}$	$\tilde{5}$	$\tilde{4}$	$\tilde{1}$	$\tilde{0}$	$\tilde{1}$	$\tilde{0}$
$\tilde{14}$	$\tilde{14}$	$\tilde{14}$	$\tilde{12}$	$\tilde{12}$	$\tilde{10}$	$\tilde{10}$	$\tilde{8}$	$\tilde{8}$	$\tilde{6}$	$\tilde{6}$	$\tilde{4}$	$\tilde{4}$	$\tilde{2}$	$\tilde{2}$	$\tilde{0}$	$\tilde{0}$
$\tilde{15}$	$\tilde{15}$	$\tilde{14}$	$\tilde{13}$	$\tilde{12}$	$\tilde{11}$	$\tilde{10}$	$\tilde{9}$	$\tilde{8}$	$\tilde{7}$	$\tilde{6}$	$\tilde{5}$	$\tilde{4}$	$\tilde{3}$	$\tilde{2}$	$\tilde{1}$	$\tilde{0}$

Proposition 3.5. The neutrosophic quadruple $B C K$-set $N Q(X)$ based on a commutative BCKalgebra X satisfies the following assertions.

$$
\begin{align*}
& (\forall \tilde{x}, \tilde{y}, \tilde{z} \in N Q(X))(\tilde{x} \ll \tilde{z}, \tilde{z} \odot \tilde{y} \ll \tilde{z} \odot \tilde{x} \Rightarrow \tilde{x} \ll \tilde{y}) . \tag{9}\\
& (\forall \tilde{x}, \tilde{y}, \tilde{z} \in N Q(X))(\tilde{x} \ll \tilde{z}, \tilde{y} \ll \tilde{z}, \tilde{z} \odot \tilde{y} \ll \tilde{z} \odot \tilde{x} \Rightarrow \tilde{x} \ll \tilde{y}) . \tag{10}\\
& (\forall \tilde{x}, \tilde{y}, \tilde{z} \in N Q(X))(\tilde{x} \ll \tilde{y} \Rightarrow \tilde{y} \odot(\tilde{y} \odot \tilde{x})=\tilde{x}) . \tag{11}\\
& (\forall \tilde{x}, \tilde{y} \in N Q(X))(\tilde{x} \odot(\tilde{x} \odot \tilde{y})=\tilde{y} \odot(\tilde{y} \odot(\tilde{x} \odot(\tilde{x} \odot \tilde{y})))) . \tag{12}
\end{align*}
$$

Proof. Assume that $\tilde{x} \ll \tilde{z}$ and $\tilde{z} \odot \tilde{y} \ll \tilde{z} \odot \tilde{x}$ for all $\tilde{x}, \tilde{y}, \tilde{z} \in N Q(X)$. Then $\tilde{x} \odot \tilde{z}=\tilde{0}$ and $(\tilde{z} \odot \tilde{y}) \odot(\tilde{z} \odot \tilde{x})=\tilde{0}$. Since $N Q(X)$ is commutative, we have

$$
\tilde{x} \odot \tilde{y}=(\tilde{x} \odot \tilde{0}) \odot \tilde{y}=(\tilde{x} \odot(\tilde{x} \odot \tilde{z})) \odot \tilde{y}=(\tilde{z} \odot(\tilde{z} \odot \tilde{x})) \odot \tilde{y}=(\tilde{z} \odot \tilde{y}) \odot(\tilde{z} \odot \tilde{x})=\tilde{0},
$$

that is, $\tilde{x} \ll \tilde{y}$. Condition (10) is clear by the condition (9). Suppose that $\tilde{x} \ll \tilde{y}$ for all $\tilde{x}, \tilde{y} \in$ $N Q(X)$. Note that $\tilde{y} \odot(\tilde{y} \odot \tilde{x}) \ll \tilde{y}$ and $\tilde{y} \odot(\tilde{y} \odot(\tilde{y} \odot \tilde{x})) \ll \tilde{y} \odot \tilde{x}$ for all $\tilde{x}, \tilde{y} \in N Q(X)$. It follows from the condition (10) that $\tilde{x} \ll \tilde{y} \odot(\tilde{y} \odot \tilde{x})$. Obviously, $\tilde{y} \odot(\tilde{y} \odot \tilde{x}) \ll \tilde{x}$, and so $\tilde{y} \odot(\tilde{y} \odot \tilde{x})=\tilde{x}$. Condition (12) follows directly from the condition (11).

Theorem 3.6. The neutrosophic quadruple BCK-set $N Q(X)$ based on a commutative BCKalgebra X is a lower semilattice with respect to the order " \ll ".

Proof. For any $\tilde{x}, \tilde{y} \in N Q(X)$, let $\tilde{y} \odot(\tilde{y} \odot \tilde{x})=\tilde{x} \wedge \tilde{y}$. Then $\tilde{x} \wedge \tilde{y} \ll \tilde{x}$ and $\tilde{x} \wedge \tilde{y} \ll \tilde{y}$. Let $\tilde{a} \in N Q(X)$ such that $\tilde{a} \ll \tilde{x}$ and $\tilde{a} \ll \tilde{y}$. Then

$$
\tilde{a}=\tilde{a} \odot \tilde{0}=\tilde{a} \odot(\tilde{a} \odot \tilde{x})=\tilde{x} \odot(\tilde{x} \odot \tilde{a}) .
$$

Similarly, we have $\tilde{a}=\tilde{y} \odot(\tilde{y} \odot \tilde{a})$. Thus

$$
\tilde{a}=\tilde{x} \odot(\tilde{x} \odot \tilde{a})=\tilde{x} \odot(\tilde{x} \odot(\tilde{y} \odot(\tilde{y} \odot \tilde{a}))) \ll \tilde{x} \odot(\tilde{x} \odot \tilde{y})=\tilde{y} \odot(\tilde{y} \odot \tilde{x})=\tilde{x} \wedge \tilde{y}
$$

Hence $\tilde{x} \wedge \tilde{y}$ is the greatest lower bound, and therefore $(N Q(X), \ll)$ is a lower semilattice.
Given a neutrosophic quadruple $B C K$-algebra $N Q(X)$, we consider the following set.

$$
\begin{equation*}
\Omega(\tilde{a}):=\{\tilde{x} \in N Q(X) \mid \tilde{x} \ll \tilde{a}\} . \tag{13}
\end{equation*}
$$

Proposition 3.7. Every neutrosophic quadruple $B C K$-set $N Q(X)$ based on a commutative BCKalgebra X satisfies the following identity.

$$
\begin{equation*}
(\forall \tilde{a}, \tilde{b} \in N Q(X))(\Omega(\tilde{a}) \cap \Omega(\tilde{b})=\Omega(\tilde{a} \wedge \tilde{b})) \tag{14}
\end{equation*}
$$

where $\tilde{a} \wedge \tilde{b}=\tilde{b} \odot(\tilde{b} \odot \tilde{a})$.
Proof. Let $\tilde{x} \in \Omega(\tilde{a}) \cap \Omega(\tilde{b})$. Then $\tilde{x} \ll \tilde{a}$ and $\tilde{x} \ll \tilde{b}$, and so $\tilde{x} \ll \tilde{a} \wedge \tilde{b}$. Thus $\tilde{x} \in \Omega(\tilde{a} \wedge \tilde{b})$, which shows that $\Omega(\tilde{a}) \cap \Omega(\tilde{b}) \subseteq \Omega(\tilde{a} \wedge \tilde{b})$. If $\tilde{x} \in \Omega(\tilde{a} \wedge \tilde{b})$, then $\tilde{x} \ll \tilde{a} \wedge \tilde{b}$. Hence $\tilde{x} \ll \tilde{a}$ and $\tilde{x} \ll \tilde{b}$, and thus $\tilde{x} \in \Omega(\tilde{a}) \cap \Omega(\tilde{b})$. This completes the proof.

We consider conditions for a neutrosophic quadruple $B C K$-algebra $N Q(X)$ to be commutative.
Lemma 3.8. If a neutrosophic quadruple BCK-algebra $N Q(X)$ satisfies the condition (11), then it is commutative.

Proof. Assume that $N Q(X)$ is a neutrosophic quadruple $B C K$-algebra which satisfies the condition (11). Note that $\tilde{y} \odot(\tilde{y} \odot \tilde{x}) \ll \tilde{x}$ for all $\tilde{x}, \tilde{y} \in N Q(X)$. It follows from the condition (11) that

$$
\tilde{y} \odot(\tilde{y} \odot \tilde{x})=\tilde{x} \odot(\tilde{x} \odot(\tilde{y} \odot(\tilde{y} \odot \tilde{x}))) .
$$

Hence

$$
\begin{aligned}
& (\tilde{y} \odot(\tilde{y} \odot \tilde{x})) \odot(\tilde{x} \odot(\tilde{x} \odot \tilde{y})) \\
& =(\tilde{x} \odot(\tilde{x} \odot(\tilde{y} \odot(\tilde{y} \odot \tilde{x}))) \odot(\tilde{x} \odot(\tilde{x} \odot \tilde{y})) \\
& =(\tilde{x} \odot(\tilde{x} \odot(\tilde{x} \odot \tilde{y}))) \odot(\tilde{x} \odot(\tilde{y} \odot(\tilde{y} \odot \tilde{x}))) \\
& =(\tilde{x} \odot \tilde{y}) \odot(\tilde{x} \odot(\tilde{y} \odot(\tilde{y} \odot \tilde{x}))) \\
& \ll(\tilde{y} \odot(\tilde{y} \odot \tilde{x})) \odot \tilde{y}=\tilde{0}
\end{aligned}
$$

for all $\tilde{x}, \tilde{y} \in N Q(X)$. Similarly, we get that $(\tilde{x} \odot(\tilde{x} \odot \tilde{y})) \odot(\tilde{y} \odot(\tilde{y} \odot \tilde{x}))=\tilde{0}$ by changing the role of \tilde{x} and \tilde{y}. Therefore $\tilde{x} \odot(\tilde{x} \odot \tilde{y})=\tilde{y} \odot(\tilde{y} \odot \tilde{x})$ and so $N Q(X)$ is commutative.

Theorem 3.9. If a neutrosophic quadruple $B C K$-algebra $N Q(X)$ satisfies the condition (12), then it is commutative.

Proof. Assume that $N Q(X)$ is a neutrosophic quadruple $B C K$-algebra which satisfies the condition (12). Let $\tilde{x}, \tilde{y} \in N Q(X)$ such that $\tilde{x} \ll \tilde{y}$. Then

$$
\tilde{y} \odot(\tilde{y} \odot \tilde{x})=\tilde{y} \odot(\tilde{y} \odot(\tilde{x} \odot(\tilde{x} \odot \tilde{y})))=\tilde{x} \odot(\tilde{x} \odot \tilde{y})=\tilde{x} \odot \tilde{0}=\tilde{x},
$$

and so $N Q(X)$ is commutative by Lemma 3.8.

Lemma 3.10. A neutrosophic quadruple BCK-algebra $N Q(X)$ is commutative if and only if the following assertion is valid.

$$
\begin{equation*}
(\forall \tilde{x}, \tilde{y} \in N Q(X))(\tilde{y} \odot(\tilde{y} \odot \tilde{x}) \ll(\tilde{x} \odot(\tilde{x} \odot \tilde{y}))) . \tag{15}
\end{equation*}
$$

Proof. It is straightforward.
Theorem 3.11. If a neutrosophic quadruple $B C K$-algebra $N Q(X)$ satisfies the condition (14), then it is commutative.

Proof. Let $N Q(X)$ be a neutrosophic quadruple $B C K$-algebra which satisfies the condition (14). Let $\tilde{x} \wedge \tilde{y}:=\tilde{y} \odot(\tilde{y} \odot \tilde{x})$ for all $\tilde{x}, \tilde{y} \in N Q(X)$. Then

$$
\Omega(\tilde{x} \wedge \tilde{y})=\Omega(\tilde{x}) \cap \Omega(\tilde{y})=\Omega(\tilde{y}) \cap \Omega(\tilde{x})=\Omega(\tilde{y} \wedge \tilde{x})
$$

for all $\tilde{x}, \tilde{y} \in N Q(X)$, and thus $\tilde{x} \wedge \tilde{y} \in \Omega(\tilde{y} \wedge \tilde{x})$. Hence $\tilde{x} \wedge \tilde{y} \ll \tilde{y} \wedge \tilde{x}$, that is, $\tilde{y} \odot(\tilde{y} \odot \tilde{x}) \ll$ $\tilde{x} \odot(\tilde{x} \odot \tilde{y})$. It follows from Lemma 3.10 that $N Q(X)$ is a commutative neutrosophic quadruple $B C K$-algebra.

Theorem 3.12. Given a nonempty set X, if a neutrosophic quadruple set $N Q(X)$ satisfies the following assertions

$$
\begin{align*}
& (\forall \tilde{x} \in N Q(X))(\tilde{x} \odot \tilde{0}=\tilde{x}, \tilde{x} \odot \tilde{x}=\tilde{0}), \tag{16}\\
& (\tilde{x}, \tilde{y}, \tilde{z} \in N Q(X))((\tilde{x} \odot \tilde{y}) \odot \tilde{z}=(\tilde{x} \odot \tilde{z}) \odot \tilde{y}), \tag{17}\\
& (\tilde{x}, \tilde{y} \in N Q(X))(\tilde{x} \wedge \tilde{y}=\tilde{y} \wedge \tilde{x}) \tag{18}
\end{align*}
$$

where $\tilde{x} \wedge \tilde{y}=\tilde{y} \odot(\tilde{y} \odot \tilde{x})$, then it is a commutative neutrosophic quadruple BCK-algebra.
Proof. Let $\tilde{x}, \tilde{y}, \tilde{z} \in N Q(X)$. Using conditions (16) and 17) imply that

$$
(\tilde{x} \odot(\tilde{x} \odot \tilde{y})) \odot \tilde{y}=(\tilde{x} \odot \tilde{y}) \odot(\tilde{x} \odot \tilde{y})=\tilde{0}
$$

Assume that $\tilde{x} \odot \tilde{y}=\tilde{0}$ and $\tilde{y} \odot \tilde{x}=\tilde{0}$. Then

$$
\tilde{x}=\tilde{x} \odot \tilde{0}=\tilde{x} \odot(\tilde{x} \odot \tilde{y})=\tilde{y} \wedge \tilde{x}=\tilde{x} \wedge \tilde{y}=\tilde{y} \odot(\tilde{y} \odot \tilde{x})=\tilde{y} \odot \tilde{0}=\tilde{y}
$$

Using (17) and (18), we have

$$
\begin{align*}
(\tilde{x} \odot \tilde{y}) \odot(\tilde{x} \odot \tilde{z}) & =(\tilde{x} \odot(\tilde{x} \odot \tilde{z})) \odot \tilde{y}=(\tilde{z} \wedge \tilde{x}) \odot \tilde{y}=(\tilde{x} \wedge \tilde{z}) \odot \tilde{y} \\
& =(\tilde{z} \odot(\tilde{z} \odot \tilde{x})) \odot \tilde{y}=(\tilde{z} \odot \tilde{y}) \odot(\tilde{z} \odot \tilde{x}) . \tag{19}
\end{align*}
$$

If we take $\tilde{y}=\tilde{x}$ and $\tilde{z}=\tilde{0}$ in (19), then

$$
\tilde{0} \odot \tilde{x}=(\tilde{x} \odot \tilde{x}) \odot(\tilde{x} \odot \tilde{0})=(\tilde{0} \odot \tilde{x}) \odot(\tilde{0} \odot \tilde{x})=\tilde{0}
$$

It follows from (19) and (16) that

$$
\begin{aligned}
((\tilde{x} \odot \tilde{y}) \odot(\tilde{x} \odot \tilde{z})) \odot(\tilde{z} \odot \tilde{y}) & =((\tilde{z} \odot \tilde{y}) \odot(\tilde{z} \odot \tilde{x})) \odot((\tilde{z} \odot \tilde{y}) \odot \tilde{0}) \\
& =(\tilde{0} \odot(\tilde{z} \odot \tilde{x})) \odot(\tilde{0} \odot(\tilde{z} \odot \tilde{y})) \\
& =\tilde{0} \odot \tilde{0}=\tilde{0} .
\end{aligned}
$$

Therefore $(N Q(X), \odot, \tilde{0})$ is a commutative neutrosophic quadruple $B C K$-algebra.

Given subsets A and B of a $B C K$-algebra X, consider the set

$$
N Q(A, B):=\{(a, x T, y I, z F) \in N Q(X) \mid a, x \in A ; y, z \in B\}
$$

Theorem 3.13. If A and B are commutative ideals of a BCK-algebra X, then the set $N Q(A, B)$ is a commutative ideal of $N Q(X)$, which is called a commutative neutrosophic quadruple ideal.
Proof. Assume that A and B are commutative ideals of a $B C K$-algebra X. Obviously, $\tilde{0} \in$ $N Q(A, B)$. Let $\tilde{x}=\left(x_{1}, x_{2} T, x_{3} I, x_{4} F\right), \tilde{y}=\left(y_{1}, y_{2} T, y_{3} I, y_{4} F\right)$ and $\tilde{z}=\left(z_{1}, z_{2} T, z_{3} I, z_{4} F\right)$ be elements of $N Q(X)$ such that $\tilde{z} \in N Q(A, B)$ and $(\tilde{x} \odot \tilde{y}) \odot \tilde{z} \in N Q(A, B)$. Then

$$
\begin{aligned}
(\tilde{x} \odot \tilde{y}) \odot \tilde{z}= & \left(\left(x_{1} * y_{1}\right) * z_{1},\left(\left(x_{2} * y_{2}\right) * z_{2}\right) T\right. \\
& \left.\left(\left(x_{3} * y_{3}\right) * z_{3}\right) I,\left(\left(x_{4} * y_{4}\right) * z_{4}\right) F\right) \in N Q(A, B),
\end{aligned}
$$

and so $\left(x_{1} * y_{1}\right) * z_{1} \in A,\left(x_{2} * y_{2}\right) * z_{2} \in A,\left(x_{3} * y_{3}\right) * z_{3} \in B$ and $\left(x_{4} * y_{4}\right) * z_{4} \in B$. Since $\tilde{z} \in N Q(A, B)$, we have $z_{1}, z_{2} \in A$ and $z_{3}, z_{4} \in B$. Since A and B are commutative ideals of X, it follows that $x_{1} *\left(y_{1} *\left(y_{1} * x_{1}\right)\right) \in A, x_{2} *\left(y_{2} *\left(y_{2} * x_{2}\right)\right) \in A, x_{3} *\left(y_{3} *\left(y_{3} * x_{3}\right)\right) \in B$ and $x_{4} *\left(y_{4} *\left(y_{4} * x_{4}\right)\right) \in B$. Hence

$$
\begin{aligned}
& \tilde{x} \odot(\tilde{y} \odot(\tilde{y} \odot \tilde{x}))=\left(x_{1} *\left(y_{1} *\left(y_{1} * x_{1}\right)\right),\left(x_{2} *\left(y_{2} *\left(y_{2} * x_{2}\right)\right)\right) T,\right. \\
&\left.\left(x_{3} *\left(y_{3} *\left(y_{3} * x_{3}\right)\right)\right) I,\left(x_{4} *\left(y_{4} *\left(y_{4} * x_{4}\right)\right)\right) F\right) \in N Q(A, B),
\end{aligned}
$$

and therefore $N Q(A, B)$ is a commutative ideal of $N Q(X)$.
Lemma 3.14 ([12]). If A and B are ideals of a $B C K$-algebra X, then the set $N Q(A, B)$ is an ideal of $N Q(X)$, which is called a neutrosophic quadruple ideal.

Theorem 3.15. Let A and B be ideals of a BCK-algebra X such that

$$
\begin{equation*}
(\forall x, y \in X)(x * y \in A(\text { resp., } B) \Rightarrow x *(y *(y * x)) \in A \text { (resp., } B)) . \tag{20}
\end{equation*}
$$

Then $N Q(A, B)$ is a commutative ideal of $N Q(X)$.
Proof. If A and B are ideals of a $B C K$-algebra X, then $N Q(A, B)$ is an ideal of $N Q(X)$ by Lemma 3.14. Let $\tilde{x}=\left(x_{1}, x_{2} T, x_{3} I, x_{4} F\right), \tilde{y}=\left(y_{1}, y_{2} T, y_{3} I, y_{4} F\right)$ and $\tilde{z}=\left(z_{1}, z_{2} T, z_{3} I, z_{4} F\right)$ be elements of $N Q(X)$ such that $(\tilde{x} \odot \tilde{y}) \odot \tilde{z} \in N Q(A, B)$ and $\tilde{z} \in N Q(A, B)$. Then

$$
(\tilde{x} \odot \tilde{y}) \odot \tilde{z}=\left(\left(x_{1} * y_{1}\right) * z_{1},\left(\left(x_{2} * y_{2}\right) * z_{2}\right) T,\left(\left(x_{3} * y_{3}\right) * z_{3}\right) I,\left(\left(x_{4} * y_{4}\right) * z_{4}\right) F\right) \in N Q(A, B)
$$

and $\tilde{z}=\left(z_{1}, z_{2} T, z_{3} I, z_{4} F\right) \in N Q(A, B)$, so $\left(x_{1} * y_{1}\right) * z_{1} \in A,\left(x_{2} * y_{2}\right) * z_{2} \in A,\left(x_{3} * y_{3}\right) * z_{3} \in B$, $\left(x_{4} * y_{4}\right) * z_{4} \in B, z_{1} \in A, z_{2} \in A, z_{3} \in B$ and $z_{4} \in B$. Since A and B are ideals of X, we get that $x_{1} * y_{1} \in A, x_{2} * y_{2} \in A, x_{3} * y_{3} \in B$ and $x_{4} * y_{4} \in B$. It follows from 20) that $x_{1} *\left(y_{1} *\left(y_{1} * x_{1}\right)\right) \in A$, $x_{2} *\left(y_{2} *\left(y_{2} * x_{2}\right)\right) \in A, x_{3} *\left(y_{3} *\left(y_{3} * x_{3}\right)\right) \in B$ and $x_{4} *\left(y_{4} *\left(y_{4} * x_{4}\right)\right) \in B$. Hence

$$
\begin{aligned}
& \tilde{x} \odot(\tilde{y} \odot(\tilde{y} \odot \tilde{x}))=\left(x_{1} *\left(y_{1} *\left(y_{1} * x_{1}\right)\right),\left(x_{2} *\left(y_{2} *\left(y_{2} * x_{2}\right)\right)\right) T,\right. \\
&\left.\left(x_{3} *\left(y_{3} *\left(y_{3} * x_{3}\right)\right)\right) I,\left(x_{4} *\left(y_{4} *\left(y_{4} * x_{4}\right)\right)\right) F\right) \in N Q(A, B) .
\end{aligned}
$$

Therefore $N Q(A, B)$ is a commutative ideal of $N Q(X)$.
Corollary 3.16. For any ideals A and B of a $B C K$-algebra X, if the set $N Q(A, B)$ satisfies

$$
(\forall \tilde{x}, \tilde{y} \in N Q(A, B))(\tilde{x} \odot \tilde{y} \in N Q(A, B) \Rightarrow \tilde{x} \odot(\tilde{y} \odot(\tilde{y} \odot \tilde{x})) \in N Q(A, B)),
$$

then $N Q(A, B)$ is a commutative ideal of $N Q(X)$.

Theorem 3.17. Let I, J, A and B be ideals of a $B C K$-algebra X such that $I \subseteq A$ and $J \subseteq B$. If I and J are commutative ideals of X, then the set $N Q(A, B)$ is a commutative ideal of $N Q(X)$.

Proof. If I and J are commutative ideals of X, then $N Q(I, J)$ is a commutative ideal of $N Q(X)$ by Theorem 3.13. Note that $N Q(A, B)$ is an ideal of $N Q(X)$ by Lemma 3.14 and $N Q(I, J) \subseteq$ $N Q(A, B)$. Assume that $x * y \in A$ (resp., B) for all $x, y \in X$ and let $a:=x * y$. Then

$$
(x * a) * y=(x * y) * a=0 \in I(\text { resp., } J),
$$

and so $((x * a) * y) * 0=(x * a) * y \in I$ (resp., J). Since I and J are commutative ideals of X with $I \subseteq A$ and $J \subseteq B$, it follows that

$$
(x *(y *(y *(x * a)))) * a=(x * a) *(y *(y *(x * a))) \in I \subseteq A \text { (resp., } J \subseteq B)
$$

thus, $x *(y *(y *(x * a))) \in A$ (resp., $B)$. On the other hand,

$$
\begin{aligned}
& (x *(y *(y * x))) *(x *(y *(y *(x * a)))) \leq(y *(y *(x * a))) *(y *(y * x)) \\
& \leq(y * x) *(y *(x * a)) \leq(x * a) * x=0 * a=0 .
\end{aligned}
$$

Hence $(x *(y *(y * x))) *(x *(y *(y *(x * a))))=0 \in A$ (resp., $B)$, and thus $x *(y *(y * x)) \in A$ (resp., B). Therefore A and B are commutative ideals of X, and so $N Q(A, B)$ is a commutative ideal of $N Q(X)$ by Theorem 3.13 .

The following examples illustrate Theorem 3.13 .
Example 3.18. Consider a BCK-algebra $X=\{0,1,2\}$ with the binary operation $*$ which is given in Table 3 .

Table 3: Cayley table for the binary operation "*"

$*$	0	1	2
0	0	0	0
1	1	0	1
2	2	2	0

Then the neutrosophic quadruple BCK-algebra $N Q(X)$ has 81 elements. If we take commutative ideals $A=\{0,1\}$ and $B=\{0,2\}$ of X, then

$$
\begin{aligned}
N Q(A, B)= & \{(0,0 T, 0 I, 0 F),(0,0 T, 0 I, 2 F),(0,0 T, 2 I, 0 F),(0,0 T, 2 I, 2 F), \\
& (0,1 T, 0 I, 0 F),(0,1 T, 0 I, 2 F),(0,1 T, 2 I, 0 F),(0,1 T, 2 I, 2 F), \\
& (1,0 T, 0 I, 0 F),(1,0 T, 0 I, 2 F),(1,0 T, 2 I, 0 F),(1,0 T, 2 I, 2 F), \\
& (1,1 T, 0 I, 0 F),(1,1 T, 0 I, 2 F),(1,1 T, 2 I, 0 F),(1,1 T, 2 I, 2 F)\}
\end{aligned}
$$

which is a commutative ideal of $N Q(X)$.
Example 3.19. Consider a BCK-algebra $X=\{0, a, b, c\}$ with the binary operation $*$ which is given in Table 4.

Table 4: Cayley table for the binary operation "*"

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	a	0	b
c	c	c	c	0

Then $(X, *, 0)$ is a commutative BCK-algebra (see [14]), and the neutrosophic quadruple BCKset $N Q(X)$ based on X has 256 elements and it is a commutative BCK-algebra by Theorem 3.3. If we take commutative ideals $A=\{0, a, b\}$ and $B=\{0, c\}$ of X, then the set $N Q(A, B)$ consists of 36 elements, which is a commutative ideal of $N Q(X)$ by Theorem 3.13, and it is given as follows.

$$
\begin{aligned}
N Q(A, B)= & \{(0,0 T, 0 I, 0 F),(0,0 T, 0 I, c F),(0,0 T, c I, 0 F),(0,0 T, c I, c F), \\
& (0, a T, 0 I, 0 F),(0, a T, 0 I, c F),(0, a T, c I, 0 F),(0, a T, c I, c F), \\
& (0, b T, 0 I, 0 F),(0, b T, 0 I, c F),(0, b T, c I, 0 F),(0, b T, c I, c F), \\
& (a, 0 T, 0 I, 0 F),(a, 0 T, 0 I, c F),(a, 0 T, c I, 0 F),(a, 0 T, c I, c F), \\
& (a, a T, 0 I, 0 F),(a, a T, 0 I, c F),(a, a T, c I, 0 F),(a, a T, c I, c F), \\
& (a, b T, 0 I, 0 F),(a, b T, 0 I, c F),(a, b T, c I, 0 F),(a, b T, c I, c F), \\
& (b, 0 T, 0 I, 0 F),(b, 0 T, 0 I, c F),(b, 0 T, c I, 0 F),(b, 0 T, c I, c F), \\
& (b, a T, 0 I, 0 F),(b, a T, 0 I, c F),(b, a T, c I, 0 F),(b, a T, c I, c F), \\
& (b, b T, 0 I, 0 F),(b, b T, 0 I, c F),(b, b T, c I, 0 F),(b, b T, c I, c F)\} .
\end{aligned}
$$

4 Conclusions

We have considered a commutative neutrosophic quadruple ideals and BCK-algebras are discussed, and investigated several related properties are investigated. Conditions for the neutrosophic quadruple BCK-algebra to be commutative are considered. Given subsets A and B of a neutrosophic quadruple BCK algebra, conditions for the set $\mathrm{NQ}(\mathrm{A}, \mathrm{B})$ to be a commutative ideal of a neutrosophic quadruple BCK-algebra are provided.

References

[1] A.A.A.Agboola, B. Davvaz, F. Smarandache, Neutrosophic quadruple algebraic hyperstructures, Annals of Fuzzy Mathematics and Informatics, 14(1) (2017), 29-42.
[2] S.A. Akinleye, F. Smarandache, A.A.A. Agboola, On neutrosophic quadruple algebraic structures, Neutrosophic Sets and Systems, 12 (2016), 122-126.
[3] A. Borumand Saeid, Y.B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Annals of Fuzzy Mathematics and Informatics, 14(1) (2017), 87-97.
[4] R.A. Borzooei, M. Mohseni Takallo, F. Smarandache, Y.B. Jun, Positive implicative BMBJneutrosophic ideals in BCK-algebras, Neutrosophic Sets and Systems, 23 (2018), 126-141.
[5] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
[6] K. Iséki, On BCI-algebras, Mathematics Seminar Notes, 8 (1980), 125-130.
[7] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, The Mathematical Society of Japan, 23 (1978), 1-26.
[8] Y.B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Annals of Fuzzy Mathematics and Informatics, 14(1) (2017), 75-86.
[9] Y.B. Jun, S.J. Kim, F. Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms, 7 (2018), 23.
[10] Y.B. Jun, F. Smarandache, H. Bordbar, Neutrosophic \mathcal{N}-structures applied to BCK/BCIalgebras, Information, 8 (2017), 128.
[11] Y.B. Jun, F. Smarandache, S.Z. Song, M. Khan, Neutrosophic positive implicative \mathcal{N}-ideals in BCK/BCI-algebras, Axioms, 7 (2018), 3.
[12] Y.B. Jun, S.Z. Song, F. Smarandache, H. Bordbar, Neutrosophic quadruple BCK/BCIalgebras, Axioms, 7 (2018), 41.
[13] M. Khan, S. Anis, F. Smarandache, Y.B. Jun, Neutrosophic \mathcal{N}-structures and their applications in semigroups, Annals of Fuzzy Mathematics and Informatics, 14(6) (2017), 583-598.
[14] J. Meng, Y.B. Jun, BCK-algebras, Kyungmoonsa Co. Seoul, Korea 1994.
[15] M. Mohseni Takallo, R.A. Borzooei, Y.B. Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic Sets and Systems, 23 (2018), 72-84.
[16] M.A. Öztürk, Y.B. Jun, Neutrosophic ideals in $B C K / B C I$-algebras based on neutrosophic points, Journal of the International Mathematical Virtual Institute, 8 (2018), 1-17.
[17] F. Smarandache, Neutrosophy, neutrosophic probability, set, and logic, ProQuest Information \& Learning, Ann Arbor, Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBookneutrosophics6.pdf (last edition online).
[18] F. Smarandache, A unifying field in logics: Neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability, American Reserch Press, Rehoboth, NM, 1999.
[19] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, 24(3) (2005), 287-297.
[20] F. Smarandache, Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, and the multiplication of neutrosophic quadruple numbers, Neutrosophic Sets and Systems, 10 (2015), 96-98.
[21] S.Z. Song, F. Smarandache, Y.B. Jun, Neutrosophic commutative \mathcal{N}-ideals in BCK-algebras, Information, 8 (2017), 130.

[^0]: https://doi.org/10.29252/hatef.jahla.1.1.7

