

Multipolar fuzzy hyper BCK-ideals of hyper BCK-algebras

Y.B. Jun¹

¹Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea

skywine@gmail.com

Abstract

In this paper, we apply *m*-polar fuzzy set to hyper BCKalgebra. We introduce the notions of *k*-polar fuzzy hyper BCK-ideal, *k*-polar fuzzy weak hyper BCK-ideal, *k*-polar fuzzy *s*-weak hyper BCK-ideal, *k*-polar fuzzy strong hyper BCK-ideal and *k*-polar fuzzy reflexive hyper BCKideal, and investigate related properties and their relations. We discuss *k*-polar fuzzy (weak, *s*-weak, strong, reflexive) hyper BCK-ideal in relation to *k*-polar level set.

Article Information

Corresponding Author: Y.B. Jun; Received: December 2019; Accepted: Invited paper. Paper type: Original.

Keywords:

Hyper BCK-algebra, *k*-polar fuzzy (weak, *s*-weak, strong, reflexive) hyper BCK-ideal.

1 Introduction

The hyper algebraic structure was introduced by F. Marty [14] in 1934. Bolurian et al. [5] was introduced hyper BCK-algebra as an extension of BCK-algebra. Since then, many scholars have been studying hyper BCK-algebra and its infrastructure and so on. In addition, research using fuzzy and soft set is actively being carried out (see [4], [7], [8], [9], [11]). In 2014, Chen et al. [6] introduced an *m*-polar fuzzy set which is an extension of bipolar fuzzy set. The *m*-polar fuzzy set applied to decision making problem (see [1]) and BCK/BCI-algebra (see [2, 3, 15]).

The notion of m-polar fuzzy set is applied to hyper BCK-algebra. The concepts of k-polar fuzzy (weak, s-weak, strong, reflexive) hyper BCK-ideal are introduced, and the relations and properties are investigated in relation to k-polar level set.

https://doi.org/10.29252/hatef.jahla.1.1.3

2 Preliminaries

Let \mathcal{H} be a nonempty set endowed with a hyperoperation " \circ ". For two subsets A and B of \mathcal{H} , denote by $A \circ B$ the set $\bigcup_{a \in A, b \in B} a \circ b$. We shall use $x \circ y$ instead of $x \circ \{y\}, \{x\} \circ y$, or $\{x\} \circ \{y\}$.

By a hyper BCK-algebra (see [13]) we mean a nonempty set \mathcal{H} endowed with a hyperoperation " \circ " and a constant 0 satisfying the following axioms:

(HK1) $(x \circ z) \circ (y \circ z) \ll x \circ y$,

(HK2) $(x \circ y) \circ z = (x \circ z) \circ y$,

(HK3) $x \circ \mathcal{H} \ll \{x\},\$

(HK4) $x \ll y$ and $y \ll x$ imply x = y,

for all $x, y, z \in \mathcal{H}$, where $x \ll y$ is defined by $0 \in x \circ y$ and for every $A, B \subseteq \mathcal{H}, A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$. In such case, we call " \ll " the *hyperorder* in \mathcal{H} .

Note that the condition (HK3) is equivalent to the condition:

$$(\forall x, y \in \mathcal{H})(x \circ y \ll \{x\}). \tag{1}$$

A subset A of a hyper BCK-algebra \mathcal{H} is called

• a hyper BCK-ideal of \mathcal{H} (see [13]) if

$$0 \in A,\tag{2}$$

$$(\forall x, y \in \mathcal{H})(x \circ y \ll A, y \in A \Rightarrow x \in A).$$
(3)

• a weak hyper BCK-ideal of \mathcal{H} (see [13]) if it satisfies (2) and

$$(\forall x, y \in \mathcal{H})(x \circ y \subseteq A, y \in A \Rightarrow x \in A).$$
(4)

• a strong hyper BCK-ideal of \mathcal{H} (see [12]) if it satisfies (2) and

$$(\forall x, y \in \mathcal{H})((x \circ y) \cap A \neq \emptyset, y \in A \Rightarrow x \in A).$$
(5)

• a reflexive hyper BCK-ideal of \mathcal{H} (see [12]) if it is a hyper BCK-ideal of \mathcal{H} which satisfies:

$$(\forall x \in \mathcal{H})(x \circ x \subseteq A). \tag{6}$$

Every hyper BCK-algebra \mathcal{H} satisfies the following assertions.

$$(\forall x \in \mathcal{H})(x \circ 0 \ll \{x\}, 0 \circ x = \{0\}, 0 \circ 0 = \{0\}),\tag{7}$$

- $(\forall x \in \mathcal{H})(0 \ll x, x \ll x, x \in x \circ 0), \tag{8}$
- $(\forall x, y \in \mathcal{H})(x \circ 0 \ll \{y\} \Rightarrow x \ll y), \tag{9}$
- $(\forall x, y, z \in \mathcal{H})(y \ll z \implies x \circ z \ll x \circ y), \tag{10}$

$$(\forall x, y, z \in \mathcal{H})(x \circ y = \{0\} \Rightarrow x \circ z \ll y \circ z, (x \circ z) \circ (y \circ z) = \{0\}), \tag{11}$$

For any subsets A, B and C of a hyper BCK-algebra \mathcal{H} , the following assertions are valid.

$$A \subseteq B \ \Rightarrow \ A \ll B,\tag{12}$$

$$A \ll \{0\} \Rightarrow A = \{0\},\tag{13}$$

$$A \ll A, A \circ B \ll A, (A \circ B) \circ C = (A \circ C) \circ B,$$
(14)

$$A \circ \{0\} = \{0\} \Rightarrow A = \{0\}.$$
(15)

For any family $\{a_i \mid i \in \Lambda\}$ of real numbers, we define

$$\bigvee \{a_i \mid i \in \Lambda\} := \begin{cases} \max\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \sup\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$
$$\bigwedge \{a_i \mid i \in \Lambda\} := \begin{cases} \min\{a_i \mid i \in \Lambda\} & \text{if } \Lambda \text{ is finite,} \\ \inf\{a_i \mid i \in \Lambda\} & \text{otherwise.} \end{cases}$$

If $\Lambda = \{1, 2\}$, then we will also use $a_1 \vee a_2$ and $a_1 \wedge a_2$ instead of $\bigvee \{a_i \mid i \in \Lambda\}$ and $\bigwedge \{a_i \mid i \in \Lambda\}$, respectively.

By a *k*-polar fuzzy set on a universe \mathcal{H} (see [6]), we mean a function $\hat{\varphi} : \mathcal{H} \to [0,1]^k$. The membership value of every element $x \in \mathcal{H}$ is denoted by

$$\hat{\varphi}(x) = (\pi_1 \circ \hat{\varphi}(x), \pi_2 \circ \hat{\varphi}(x), \cdots, \pi_k \circ \hat{\varphi}(x)),$$

where $\pi_i : [0,1]^k \to [0,1]$ is the *i*-th projection for all $i = 1, 2, \cdots, k$.

Given a k-polar fuzzy set on a universe \mathcal{H} , we consider the set

$$U(\hat{\varphi}, \hat{t}) := \{ x \in \mathcal{H} \mid \hat{\varphi}(x) \ge \hat{t} \},\tag{16}$$

where $\hat{t} = (t_1, t_2, \cdots, t_k) \in [0, 1]^k$, that is,

$$U(\hat{\varphi}, \hat{t}) := \{ x \in \mathcal{H} \mid (\pi_i \circ \hat{\varphi})(x) \ge t_i \text{ for all } i = 1, 2, \cdots, k \}$$
(17)

which is called a k-polar level set of $\hat{\varphi}$. It is clear that $U(\hat{\varphi}, \hat{t}) = \bigcap_{i=1}^{k} U(\hat{\varphi}, \hat{t})^{i}$ where

 $U(\hat{\varphi}, \hat{t})^i = \{ x \in \mathcal{H} \mid (\pi_i \circ \hat{\varphi})(x) \ge t_i \}.$

3 k-polar fuzzy hyper BCK-ideals

Definition 3.1. A k-polar fuzzy set $\hat{\varphi}$ on a hyper BCK-algebra \mathcal{H} is called a k-polar fuzzy hyper BCK-ideal of \mathcal{H} if it satisfies

$$(\forall x, y \in \mathcal{H}) (x \ll y \Rightarrow \hat{\varphi}(x) \ge \hat{\varphi}(y)), \qquad (18)$$

$$(\forall x, y \in \mathcal{H}) \left(\hat{\varphi}(x) \ge \left(\bigwedge \{ \hat{\varphi}(a) \mid a \in x \circ y \} \right) \land \hat{\varphi}(y) \right), \tag{19}$$

that is, $(\pi_i \circ \hat{\varphi})(x) \ge (\pi_i \circ \hat{\varphi})(y)$ for all $x, y \in \mathcal{H}$ with $x \ll y$ and

$$(\pi_i \circ \hat{\varphi})(x) \ge \left(\bigwedge \{ (\pi_i \circ \hat{\varphi})(a) \mid a \in x \circ y \} \right) \land (\pi_i \circ \hat{\varphi})(y)$$
(20)

for all $x, y \in \mathcal{H}$ and $i = 1, 2, \cdots, k$.

Example 3.2. Let $\mathcal{H} = \{0, a, b\}$ be a set with the hyperoperation " \circ " in the following Cayley table

0	0	a	b
0	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0,a\}$	$\{0,a\}$
b	$\{b\}$	$\{a,b\}$	$\{0, a, b\}$

Then \mathcal{H} is a hyper BCK-algebra (see [13]). Let $\hat{\varphi}$ be a 4-polar fuzzy set on \mathcal{H} defined by

$$\hat{\varphi}: \mathcal{H} \to [0,1]^4, \ x \mapsto \begin{cases} \left(\frac{1}{n}, 0.9, \frac{1}{m-3}, 0.7\right) & \text{if } x = 0, \\ \left(\frac{1}{2n}, 0.5, \frac{1}{2m-3}, 0.7\right) & \text{if } x = a, \\ \left(\frac{1}{3n}, 0.2, \frac{1}{3m-3}, 0.4\right) & \text{if } x = b \end{cases}$$

where $m, n \in \mathbb{N}$ and $m \neq 3$. It is toutine to verify that $\hat{\varphi}$ is a 4-polar fuzzy hyper BCK-ideal of \mathcal{H} .

Proposition 3.3. If $\hat{\varphi}$ is a k-polar fuzzy hyper BCK-ideal of a hyper BCK-algebra \mathcal{H} , then

- (1) $(\forall x \in \mathcal{H})(\hat{\varphi}(0) \ge \hat{\varphi}(x))$, that is, $(\pi_i \circ \hat{\varphi})(0) \ge (\pi_i \circ \hat{\varphi})(x)$ for all $x \in \mathcal{H}$ and $i = 1, 2, \cdots, k$,
- (2) If $\hat{\varphi}$ satisfies the condition

$$(\forall T \subseteq \mathcal{H}) \left(\exists x_0 \in T \text{ s.t. } \hat{\varphi}(x_0) = \bigwedge_{x \in T} \hat{\varphi}(x) \right),$$
(21)

then

$$(\forall x, y \in \mathcal{H}) (\exists a \in x \circ y \text{ s.t. } \hat{\varphi}(x) \ge \hat{\varphi}(a) \land \hat{\varphi}(y)), \qquad (22)$$

that is, for every $x, y \in \mathcal{H}$ there exists $a \in x \circ y$ such that

$$(\pi_i \circ \hat{\varphi})(x) \ge (\pi_i \circ \hat{\varphi})(a) \land (\pi_i \circ \hat{\varphi})(y)$$

for $i = 1, 2, \cdots, k$.

Proof. (1) Since $0 \ll x$ for all $x \in \mathcal{H}$, it follows from (18) that $\hat{\varphi}(0) \ge \hat{\varphi}(x)$ for all $x \in \mathcal{H}$.

(2) Assume that $\hat{\varphi}$ satisfies the condition (21). For any $x, y \in \mathcal{H}$, there exists $a_0 \in x \circ y$ such that $(\pi_i \circ \hat{\varphi})(a_0) = \bigwedge_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a)$. It follows from (20) that

$$(\pi_i \circ \hat{\varphi})(x) \ge \left(\bigwedge \{ (\pi_i \circ \hat{\varphi})(a) \mid a \in x \circ y \} \right) \land (\pi_i \circ \hat{\varphi})(y) = (\pi_i \circ \hat{\varphi})(a_0) \land (\pi_i \circ \hat{\varphi})(y)$$

for $i = 1, 2, \cdots, k$. which proves (2).

Theorem 3.4. Let $\hat{\varphi}$ be a k-polar fuzzy set in a hyper BCK-algebra \mathcal{H} . If $\hat{\varphi}$ is a k-polar fuzzy hyper BCK-ideal of \mathcal{H} , then the k-polar level set $U(\hat{\varphi}, \hat{t})$ is a hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$.

Proof. Assume that $\hat{\varphi}$ is a k-polar fuzzy hyper BCK-ideal of \mathcal{H} and let $\hat{t} \in [0,1]^k$. It is clear that $0 \in U(\hat{\varphi}, \hat{t})$. Let $x, y \in \mathcal{H}$ be such that $x \circ y \ll U(\hat{\varphi}, \hat{t})$ and $y \in U(\hat{\varphi}, \hat{t})$. Then $x \circ y \ll U(\hat{\varphi}, \hat{t})^i$ and $y \in U(\hat{\varphi}, \hat{t})^i$ for all $i = 1, 2, \cdots, k$. It follows that

$$(\forall a \in x \circ y) \left(\exists a_0 \in U(\hat{\varphi}, \hat{t})^i \text{ s.t. } a \ll a_0 \text{ and so } (\pi_i \circ \hat{\varphi})(a) \ge (\pi_i \circ \hat{\varphi})(a_0) \right),$$

which implies that $(\pi_i \circ \hat{\varphi})(a) \ge t_i$ for all $a \in x \circ y$. Hence $\bigwedge_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a) \ge t_i$, and so

$$(\pi_i \circ \hat{\varphi})(x) \ge \left(\bigwedge \{ (\pi_i \circ \hat{\varphi})(a) \mid a \in x \circ y \} \right) \land (\pi_i \circ \hat{\varphi})(y) \ge t_i$$

for all $i = 1, 2, \cdots, k$. Thus $x \in \bigcap_{i=1}^{k} U(\hat{\varphi}, \hat{t})^i = U(\hat{\varphi}, \hat{t})$, and therefore $U(\hat{\varphi}, \hat{t})$ is a hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$.

In order to consider the converse of Theorem 3.4, we need the following lemma.

Lemma 3.5 ([10]). Let A be a subset of a hyper BCK-algebra \mathcal{H} . If K is a hyper BCK-ideal of \mathcal{H} such that $A \ll K$, then A is contained in K.

Theorem 3.6. Let $\hat{\varphi}$ be a k-polar fuzzy set in a hyper BCK-algebra \mathcal{H} in which the k-polar level set $U(\hat{\varphi}, \hat{t})$ is a hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$. Then $\hat{\varphi}$ is a k-polar fuzzy hyper BCK-ideal of \mathcal{H} .

Proof. Suppose that the k-polar level set $U(\hat{\varphi}, \hat{t})$ is a hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$. Let $x, y \in \mathcal{H}$ be such that $x \ll y$ and $\hat{\varphi}(y) = \hat{t}$. Then $y \in U(\hat{\varphi}, \hat{t})$ and so $\{x\} \ll U(\hat{\varphi}, \hat{t})$. It follows from Lemma 3.5 that $\{x\} \subseteq U(\hat{\varphi}, \hat{t})$, i.e., $x \in U(\hat{\varphi}, \hat{t})$. Hence $\hat{\varphi}(x) \ge \hat{t} = \hat{\varphi}(y)$. For any $x, y \in \mathcal{H}$,

let $\hat{t} := \left(\bigwedge_{a \in x \circ y} \hat{\varphi}(a)\right) \land \hat{\varphi}(y)$. Then $y \in U(\hat{\varphi}, \hat{t})$ and

$$\hat{\varphi}(c) \ge \bigwedge_{a \in x \circ y} \hat{\varphi}(a) \ge \left(\bigwedge_{a \in x \circ y} \hat{\varphi}(a)\right) \land \hat{\varphi}(y) = \hat{t}$$

for all $c \in x \circ y$, i.e., $c \in U(\hat{\varphi}, \hat{t})$. Thus $x \circ y \subseteq U(\hat{\varphi}, \hat{t})$ and so $x \circ y \ll U(\hat{\varphi}, \hat{t})$ by (12). Since $y \in U(\hat{\varphi}, \hat{t})$ and $U(\hat{\varphi}, \hat{t})$ is a hyper BCK-ideal of \mathcal{H} , we have $x \in U(\hat{\varphi}, \hat{t})$ which implies that $\hat{\varphi}(x) \geq \hat{t} = \left(\bigwedge_{a \in x \circ y} \hat{\varphi}(a)\right) \land \hat{\varphi}(y)$. Therefore $\hat{\varphi}$ is a k-polar fuzzy hyper BCK-ideal of \mathcal{H} . \Box

Definition 3.7. A k-polar fuzzy set $\hat{\varphi}$ on a hyper BCK-algebra \mathcal{H} is called a

- k-polar fuzzy weak hyper BCK-ideal of \mathcal{H} if it satisfies Proposition 3.3(1) and (19).
- k-polar fuzzy s-weak hyper BCK-ideal of \mathcal{H} if it satisfies Proposition 3.3(1) and (22).
- k-polar fuzzy strong hyper BCK-ideal of H if it satisfies

$$(\forall x, y \in \mathcal{H}) \left(\bigwedge_{a \in x \circ x} \hat{\varphi}(a) \ge \hat{\varphi}(x) \ge \left(\bigvee_{b \in x \circ y} \hat{\varphi}(b) \right) \land \hat{\varphi}(y) \right),$$
(23)

that is, $\bigwedge_{a \in x \circ x} (\pi_i \circ \hat{\varphi})(a) \ge (\pi_i \circ \hat{\varphi})(x) \ge \left(\bigvee_{b \in x \circ y} (\pi_i \circ \hat{\varphi})(b)\right) \land (\pi_i \circ \hat{\varphi})(y) \text{ for all } x, y \in \mathcal{H} \text{ and } i = 1, 2, \cdots, k.$

Example 3.8. Let $\mathcal{H} = \{0, a, b\}$ be a set with the hyperoperation " \circ " in the following Cayley table

0	0	a	b
0	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0\}$	$\{a\}$
b	$\{b\}$	$\{b\}$	$\{0,b\}$

Then \mathcal{H} is a hyper BCK-algebra (see [13]). Let $\hat{\varphi}$ be a 4-polar fuzzy set on \mathcal{H} defined by

$$\hat{\varphi}: \mathcal{H} \to [0,1]^4, \ x \mapsto \begin{cases} \left(2\pi, \mu(x), \frac{1}{m+3}, 0.8\right) & \text{if } x = 0, \\ \left(\pi, \mu(2x), \frac{1}{m+5}, 0.7\right) & \text{if } x = a, \\ \left(\frac{1}{2}\pi, \mu(3x), \frac{1}{m+7}, 0.4\right) & \text{if } x = b \end{cases}$$

where $m, n \in \mathbb{N}$ and $\mu : [0,1] \to [0,1]$, $x \mapsto \frac{1}{x}$. It is toutine to verify that $\hat{\varphi}$ is a 4-polar fuzzy strong hyper BCK-ideal of \mathcal{H} .

The following theorem describes the relation between k-polar fuzzy weak hyper BCK-ideal and k-polar fuzzy s-weak hyper BCK-ideal.

Theorem 3.9. In a hyper BCK-algebra, every k-polar fuzzy s-weak hyper BCK-ideal is a k-polar fuzzy weak hyper BCK-ideal.

Proof. Let $\hat{\varphi}$ be a k-polar fuzzy s-weak hyper BCK-ideal of a hyper BCK-algebra \mathcal{H} and let $x, y \in \mathcal{H}$. Then there exists $a \in x \circ y$ such that $\hat{\varphi}(x) \geq \hat{\varphi}(a) \wedge \hat{\varphi}(y)$ by (22). Since $\hat{\varphi}(a) \geq \bigwedge_{b \in x \circ y} \hat{\varphi}(b)$,

it follows that

$$\hat{\varphi}(x) \ge \left(\bigwedge \{ \hat{\varphi}(b) \mid b \in x \circ y \} \right) \land \hat{\varphi}(y)$$

Therefore $\hat{\varphi}$ is a k-polar fuzzy weak hyper BCK-ideal of \mathcal{H} .

Theorem 3.10. Let $\hat{\varphi}$ be a k-polar fuzzy weak hyper BCK-ideal of a hyper BCK-algebra \mathcal{H} which satisfies the condition (21). Then $\hat{\varphi}$ is a k-polar fuzzy s-weak hyper BCK-ideal of \mathcal{H} .

Proof. For any $x, y \in \mathcal{H}$, there exists $a_0 \in x \circ y$ such that $\hat{\varphi}(a_0) = \bigwedge_{a \in x \circ y} \hat{\varphi}(a)$, that is, $(\pi_i \circ \hat{\varphi})(a_0) = \bigwedge_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a)$ by (21). It follows that

$$(\pi_i \circ \hat{\varphi})(x) \ge \left(\bigwedge \{ (\pi_i \circ \hat{\varphi})(a) \mid a \in x \circ y \} \right) \land (\pi_i \circ \hat{\varphi})(y) = (\pi_i \circ \hat{\varphi})(a_0) \land (\pi_i \circ \hat{\varphi})(y).$$

Therefore $\hat{\varphi}$ is a k-polar fuzzy s-weak hyper BCK-ideal of \mathcal{H} .

Proposition 3.11. Every k-polar fuzzy strong hyper BCK-ideal $\hat{\varphi}$ of a hyper BCK-algebra \mathcal{H} satisfies the following assertions.

- (1) $(\forall x \in \mathcal{H})(\hat{\varphi}(0) \ge \hat{\varphi}(x))$, that is, $(\pi_i \circ \hat{\varphi})(0) \ge (\pi_i \circ \hat{\varphi})(x)$ for all $x \in \mathcal{H}$ and $i = 1, 2, \cdots, k$,
- (2) $(\forall x, y \in \mathcal{H})(x \ll y \Rightarrow \hat{\varphi}(x) \ge \hat{\varphi}(y))$, that is, $(\pi_i \circ \hat{\varphi})(x) \ge (\pi_i \circ \hat{\varphi})(y)$ for all $x, y \in \mathcal{H}$ with $x \ll y$ and $i = 1, 2, \cdots, k$.
- (3) $(\forall a, x, y \in \mathcal{H}) (a \in x \circ y \Rightarrow \hat{\varphi}(x) \ge \hat{\varphi}(a) \land \hat{\varphi}(y)).$

Proof. (1) Since $0 \in x \circ x$ for all $x \in \mathcal{H}$, we get

$$\hat{\varphi}(0) \ge \bigwedge_{a \in x \circ x} \hat{\varphi}(a) \ge \hat{\varphi}(x)$$

for all $x \in \mathcal{H}$.

(2) Let $x, y \in \mathcal{H}$ be such that $x \ll y$. Then $0 \in x \circ y$ and thus $\bigvee_{b \in x \circ y} (\pi_i \circ \hat{\varphi})(b) \ge (\pi_i \circ \hat{\varphi})(0)$ for $i = 1, 2, \cdots, k$. It follows from (1) that

$$(\pi_i \circ \hat{\varphi})(x) \ge \left(\bigvee_{b \in x \circ y} (\pi_i \circ \hat{\varphi})(b)\right) \land (\pi_i \circ \hat{\varphi})(y) \ge (\pi_i \circ \hat{\varphi})(0) \land (\pi_i \circ \hat{\varphi})(y) = (\pi_i \circ \hat{\varphi})(y),$$

for $i = 1, 2, \dots, k$, that is, $\hat{\varphi}(x) \ge \hat{\varphi}(y)$ for all $x, y \in \mathcal{H}$ with $x \ll y$.

(3) Let $a, x, y \in \mathcal{H}$ be such that $a \in x \circ y$. Then

$$(\pi_i \circ \hat{\varphi})(x) \ge \left(\bigvee_{b \in x \circ y} (\pi_i \circ \hat{\varphi})(b)\right) \land (\pi_i \circ \hat{\varphi})(y) \ge (\pi_i \circ \hat{\varphi})(a) \land (\pi_i \circ \hat{\varphi})(y),$$

for $i = 1, 2, \dots, k$. Hence $\hat{\varphi}(x) \ge \hat{\varphi}(a) \land \hat{\varphi}(y)$ for all $a, x, y \in \mathcal{H}$ with $a \in x \circ y$.

Corollary 3.12. If $\hat{\varphi}$ is a k-polar fuzzy strong hyper BCK-ideal of a hyper BCK-algebra \mathcal{H} , then

$$(\forall x, y \in \mathcal{H}) \left(\hat{\varphi}(x) \ge \hat{\varphi}(y) \land \left(\bigwedge_{a \in x \circ y} \hat{\varphi}(a) \right) \right)$$

Proof. It is straightforward by Proposition 3.11(3).

Corollary 3.13. Every k-polar fuzzy strong hyper BCK-ideal is a k-polar fuzzy hyper BCK-ideal and a k-polar fuzzy s-weak hyper BCK-ideal (and hence a k-polar fuzzy weak hyper BCK-ideal).

In general, a k-polar fuzzy (weak) hyper BCK-ideal may not be a k-polar fuzzy strong hyper BCK-ideal. In fact, the 4-polar fuzzy hyper BCK-ideal $\hat{\varphi}$ of \mathcal{H} in Example 3.2 is not a 4-polar fuzzy strong hyper BCK-ideal of \mathcal{H} since

$$(\pi_3 \circ \hat{\varphi})(b) = \frac{1}{3m-3} < \frac{1}{2m-3} = (\pi_3 \circ \hat{\varphi})(a) = (\pi_3 \circ \hat{\varphi})(a) \land \bigvee_{x \in b \circ a} (\pi_3 \circ \hat{\varphi})(x).$$

It is clear that every k-polar fuzzy hyper BCK-ideal of a hyper BCK-algebra \mathcal{H} is a k-polar fuzzy weak hyper BCK-ideal of \mathcal{H} . But the converse is not true in general as seen in the following example.

Example 3.14. Let $\mathcal{H} = \{0, a, b\}$ be a hyper BCK-algebra as in Example 3.2. Let $\hat{\varphi}$ be a 3-polar fuzzy set on \mathcal{H} defined by

$$\hat{\varphi}: \mathcal{H} \to [0,1]^3, \ x \mapsto \begin{cases} \left(5n, \frac{1}{m-3}, 0.7\right) & \text{if } x = 0, \\ \left(n, \frac{1}{3m-3}, 0.1\right) & \text{if } x = a, \\ \left(3n, \frac{1}{2m-3}, 0.5\right) & \text{if } x = b \end{cases}$$

where $m, n \in \mathbb{N}$ and $m \neq 3$. Then $\hat{\varphi}$ is a 3-polar fuzzy weak hyper BCK-ideal of \mathcal{H} . But it is not a 3-polar fuzzy hyper BCK-ideal of \mathcal{H} since $a \ll b$ and $\hat{\varphi}(a) \not\geq \hat{\varphi}(b)$.

By the simiar way to the proofs of Theorems 3.4 and 3.6, we have a characterization of a k-polar fuzzy weak hyper BCK-ideal.

Theorem 3.15. Given a k-polar fuzzy set $\hat{\varphi}$ in a hyper BCK-algebra \mathcal{H} , the following are equivalent.

- (1) $\hat{\varphi}$ is a k-polar fuzzy weak hyper BCK-ideal of \mathcal{H} .
- (2) The k-polar level set $U(\hat{\varphi}, \hat{t})$ is a weak hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$.

Theorem 3.16. Let $\hat{\varphi}$ be a k-polar fuzzy set in a hyper BCK-algebra \mathcal{H} . If $\hat{\varphi}$ is a k-polar fuzzy strong hyper BCK-ideal of \mathcal{H} , then the k-polar level set $U(\hat{\varphi}, \hat{t})$ is a strong hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$.

Proof. Assume that $\hat{\varphi}$ is a k-polar fuzzy strong hyper BCK-ideal of \mathcal{H} and let $\hat{t} \in [0,1]^k$ be such that the k-polar level set $U(\hat{\varphi}, \hat{t})$ is nonempty. Then there exists $a \in U(\hat{\varphi}, \hat{t})$ and so $\hat{\varphi}(a) \geq \hat{t}$, that is, $(\pi_i \circ \hat{\varphi})(a) \geq t_i$ for all $i = 1, 2, \ldots, k$. It is clear that $0 \in U(\hat{\varphi}, \hat{t})$ by Proposition 3.11(1). Let $x, y \in \mathcal{H}$ be such that $y \in U(\hat{\varphi}, \hat{t})$ and $(x \circ y) \cap U(\hat{\varphi}, \hat{t}) \neq \emptyset$. Then there exists $a_0 \in (x \circ y) \cap U(\hat{\varphi}, \hat{t})$ and so $\hat{\varphi}(a_0) \geq \hat{t}$, i.e., $(\pi_i \circ \hat{\varphi})(a_0) \geq t_i$ for $i = 1, 2, \cdots, k$. It follows that

$$(\pi_i \circ \hat{\varphi})(x) \ge \left(\bigvee_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a)\right) \land (\pi_i \circ \hat{\varphi})(y) \ge (\pi_i \circ \hat{\varphi})(a_0) \land (\pi_i \circ \hat{\varphi})(y) \ge t_i$$

for all $i = 1, 2, \dots, k$. Hence $x \in \bigcap_{i=1}^{k} U(\hat{\varphi}, \hat{t})^{i} = U(\hat{\varphi}, \hat{t})$. Therefore $U(\hat{\varphi}, \hat{t})$ is a strong hyper BCK-ideal of \mathcal{H} .

Theorem 3.17. Let $\hat{\varphi}$ be a k-polar fuzzy set on a hyper BCK-algebra \mathcal{H} which satisfies the condition

$$(\forall T \subseteq \mathcal{H}) \left(\exists x_0 \in T \text{ s.t. } \hat{\varphi}(x_0) = \bigvee_{x \in T} \hat{\varphi}(x) \right).$$
(24)

If the k-polar level set $U(\hat{\varphi}, \hat{t})$ is a strong hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$, then $\hat{\varphi}$ is a k-polar fuzzy strong hyper BCK-ideal of \mathcal{H} .

Proof. Assume that the k-polar level set $U(\hat{\varphi}, \hat{t})$ is a strong hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$. Then $x \in U(\hat{\varphi}, \hat{t})$ for some $x \in \mathcal{H}$, and so $x \circ x \ll \{x\} \subseteq U(\hat{\varphi}, \hat{t})$. This implies from Lemma 3.5 that $x \circ x \subseteq U(\hat{\varphi}, \hat{t})$. Hence for every $a \in x \circ x$, we get $a \in U(\hat{\varphi}, \hat{t})$ and so $(\pi_i \circ \hat{\varphi})(a) \ge t_i$ for all $i = 1, 2, \cdots, k$. It follows that

$$\bigwedge_{a \in x \circ x} (\pi_i \circ \hat{\varphi})(a) \ge t_i = (\pi_i \circ \hat{\varphi})(x)$$

for $i = 1, 2, \cdots, k$. For any $x, y \in \mathcal{H}$, put $\hat{d} := \left(\bigvee_{a \in x \circ y} \hat{\varphi}(a)\right) \land \hat{\varphi}(y)$, that is, $d_i := \left(\bigvee_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a)\right) \land \hat{\varphi}(y)$.

 $(\pi_i \circ \hat{\varphi})(y)$ for $i = 1, 2, \cdots, k$. Then $U(\hat{\varphi}, \hat{d})$ is a strong hyper BCK-ideal of \mathcal{H} by hypothesis. The condition (24) implies that there exists $a_0 \in x \circ y$ such that $\hat{\varphi}(a_0) = \bigvee_{a \in x \circ y} \hat{\varphi}(a)$, i.e.,

$$(\pi_i \circ \hat{\varphi})(a_0) = \bigvee_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a) \text{ for } i = 1, 2, \cdots, k. \text{ Hence}$$
$$(\pi_i \circ \hat{\varphi})(a_0) = \bigvee_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a) \ge \left(\bigvee_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a)\right) \land (\pi_i \circ \hat{\varphi})(y) = d_i$$

for $i = 1, 2, \cdots, k$, which implies that $a_0 \in \bigcap_{i=1}^k U(\hat{\varphi}, \hat{d})^i = U(\hat{\varphi}, \hat{d})$. Hence $(x \circ y) \cap U(\hat{\varphi}, \hat{d}) \neq \emptyset$, and thus $x \in U(\hat{\varphi}, \hat{d})$. It follows that

$$(\pi_i \circ \hat{\varphi})(x) \ge d_i = \left(\bigvee_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a)\right) \land (\pi_i \circ \hat{\varphi})(y)$$

for $i = 1, 2, \dots, k$. Therefore $\hat{\varphi}$ is a k-polar fuzzy strong hyper BCK-ideal of \mathcal{H} .

Definition 3.18. A k-polar fuzzy set $\hat{\varphi}$ on a hyper BCK-algebra \mathcal{H} is called a k-polar fuzzy reflexive hyper BCK-ideal of a hyper BCK-algebra \mathcal{H} if it satisfies:

$$(\forall x, y \in \mathcal{H}) \left(\hat{\varphi}(y) \le \bigwedge_{a \in x \circ x} \hat{\varphi}(a) \right), \tag{25}$$

$$(\forall x, y \in \mathcal{H}) \left(\hat{\varphi}(x) \ge \left(\bigvee_{a \in x \circ y} \hat{\varphi}(a) \right) \land \hat{\varphi}(y) \right),$$
(26)

that is, $(\pi_i \circ \hat{\varphi})(y) \leq \bigwedge_{a \in x \circ x} (\pi_i \circ \hat{\varphi})(a)$ and $(\pi_i \circ \hat{\varphi})(x) \geq \left(\bigvee_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a)\right) \wedge (\pi_i \circ \hat{\varphi})(y)$ for all $x, y \in \mathcal{H} \text{ and } i = 1, 2, \cdots, k.$

The following theorem is straightforward.

Theorem 3.19. Every k-polar fuzzy reflexive hyper BCK-ideal of a hyper BCK-algebra \mathcal{H} is a k-polar fuzzy strong hyper BCK-ideal of \mathcal{H} .

Theorem 3.20. If $\hat{\varphi}$ is a k-polar fuzzy reflexive hyper BCK-ideal of a hyper BCK-algebra \mathcal{H} , then the k-polar level set $U(\hat{\varphi}, \hat{t})$ is a reflexive hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$.

Proof. Assume that $\hat{\varphi}$ is a k-polar fuzzy reflexive hyper BCK-ideal of a hyper BCK-algebra \mathcal{H} . Then $\hat{\varphi}$ is a k-polar fuzzy strong hyper BCK-ideal of \mathcal{H} by Theorem 3.19, and so $\hat{\varphi}$ is a k-polar fuzzy hyper BCK-ideal of \mathcal{H} . It follows from Theorem 3.4 that the k-polar level set $U(\hat{\varphi}, \hat{t})$ is a hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0,1]^k$. Let $\hat{t} \in [0,1]^k$ be such that $U(\hat{\varphi}, \hat{t})$ is nonempty. Then $\hat{\varphi}(c) \geq \hat{t}$ for some $c \in \mathcal{H}$. For any $x \in \mathcal{H}$, let $b \in x \circ x$. The condition (25) implies that $\hat{\varphi}(b) \ge \bigwedge_{a \in x \circ x} \hat{\varphi}(a) \ge \hat{\varphi}(c) \ge \hat{t}$, that is, $b \in U(\hat{\varphi}, \hat{t})$. Thus $x \circ x \subseteq U(\hat{\varphi}, \hat{t})$ for all $x \in \mathcal{H}$, and therefore

 $U(\hat{\varphi}, \hat{t})$ is a reflexive hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$.

Lemma 3.21 ([12]). Every reflexive hyper BCK-ideal of a hyper BCK-algebra \mathcal{H} is a strong hyper BCK-ideal of \mathcal{H} .

In order to consider the converse of Theorem 3.20, we need an additional condition.

Theorem 3.22. Let $\hat{\varphi}$ be a k-polar fuzzy set on a hyper BCK-algebra \mathcal{H} which satisfies the condition (24). If the k-polar level set $U(\hat{\varphi}, \hat{t})$ is a reflexive hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in [0, 1]^k$, then $\hat{\varphi}$ is a k-polar fuzzy reflexive hyper BCK-ideal of \mathcal{H} .

Proof. Assume that the k-polar level set $U(\hat{\varphi}, \hat{t})$ is a reflexive hyper BCK-ideal of \mathcal{H} for all $\hat{t} \in$ $[0,1]^k$. Then $U(\hat{\varphi}, \hat{t})$ is a strong hyper BCK-ideal of \mathcal{H} by Lemma 3.21. Using Theorem 3.17, we know that $\hat{\varphi}$ is a k-polar fuzzy strong hyper BCK-ideal of \mathcal{H} and so (26) is valid. Let $x, y \in \mathcal{H}$

and $(\pi_i \circ \hat{\varphi})(y) = t_i$ for $i = 1, 2, \dots, k$. Since $U(\hat{\varphi}, \hat{t})$ is a reflexive hyper BCK-ideal of \mathcal{H} , we get $x \circ x \subseteq U(\hat{\varphi}, \hat{t})$ and thus $c \in U(\hat{\varphi}, \hat{t})$ for all $c \in x \circ x$. Hence $(\pi_i \circ \hat{\varphi})(c) \ge t_i$ which implies that

$$\bigwedge_{c\in x\circ x} (\pi_i\circ \hat{\varphi})(c) \geq t_i = (\pi_i\circ \hat{\varphi})(y)$$

for all $i = 1, 2, \dots, k$. Therefore $\hat{\varphi}$ is a k-polar fuzzy reflexive hyper BCK-ideal of \mathcal{H} .

Theorem 3.23. Let $\hat{\varphi}$ be a k-polar fuzzy strong hyper BCK-ideal of \mathcal{H} which satisfies the condition (24). Then $\hat{\varphi}$ is a k-polar fuzzy reflexive hyper BCK-ideal of \mathcal{H} if and only if $\bigwedge_{a \in x \circ x} (\pi_i \circ \hat{\varphi})(a) \ge (\pi_i \circ \hat{\varphi})(0)$ for all $x \in \mathcal{H}$ and $i = 1, 2, \cdots, k$.

Proof. Assume that $\hat{\varphi}$ is a k-polar fuzzy strong hyper BCK-ideal of \mathcal{H} which satisfies the condition (24). The necessity is clear. Assume that $\bigwedge_{a \in x \circ x} (\pi_i \circ \hat{\varphi})(a) \ge (\pi_i \circ \hat{\varphi})(0)$ for all $x \in \mathcal{H}$ and $i = 1, 2, \cdots, k$. Since $\hat{\varphi}$ is a k-polar fuzzy hyper BCK-ideal of \mathcal{H} by Corollary 3.13, we have $(\pi_i \circ \hat{\varphi})(0) \ge (\pi_i \circ \hat{\varphi})(y)$ for all $y \in \mathcal{H}$ and $i = 1, 2, \cdots, k$. It follows that $\bigwedge_{a \in x \circ x} (\pi_i \circ \hat{\varphi})(a) \ge (\pi_i \circ \hat{\varphi})(a)$ is a strong hyper \mathcal{H} and $i = 1, 2, \cdots, k$. For any $x, y \in \mathcal{H}$ and $i = 1, 2, \cdots, k$, let $t_i := (\pi_i \circ \hat{\varphi})(y) \land (\bigvee_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a))$. The condition (24) implies that there exists $a_0 \in x \circ y$ such that $\hat{\varphi}(a_0) = \bigvee_{a \in x \circ y} \hat{\varphi}(a)$ and so $\hat{\varphi}(a_0) \ge \hat{t}$, i.e., $a_0 \in U(\hat{\varphi}, \hat{t})$. Hence $(x \circ y) \cap U(\hat{\varphi}, \hat{t}) \neq \emptyset$. Since $(\pi_i \circ \hat{\varphi})(x) \ge t_i = (\pi_i \circ \hat{\varphi})(y) \land (\bigvee_{a \in x \circ y} (\pi_i \circ \hat{\varphi})(a))$. Therefore $\hat{\varphi}$ is a k-polar fuzzy reflexive hyper BCK-ideal of \mathcal{H} .

4 Conclusion

We have applied the *m*-polar fuzzy set to hyper BCK-algebra. We have introduced the notions of k-polar fuzzy hyper BCK-ideal, k-polar fuzzy weak hyper BCK-ideal, k-polar fuzzy strong hyper BCK-ideal and k-polar fuzzy reflexive hyper BCK-ideal, and have investigated related properties and their relations. We have discussed k-polar fuzzy (weak, s-weak, strong, reflexive) hyper BCK-ideal in relation to k-polar level set. In the future work, we will use the idea and results in this paper to study hyper MV-algebra, hyper hoop, hyper equality algebra, hyper BCI-algebra etc.

References

- M. Akram, N. Waseem, P. Liu, Novel approach in decision making with m-polar fuzzy ELECTRE-I, International Journal of Fuzzy Systems, 21(4) (2019), 1117–1129.
- [2] A. Al-Masarwah, A.G. Ahmad, *m-polar fuzzy ideals of BCK/BCI-algebras*, Journal of King Saud University-Science, 31 (2019), 1220–1226.
- [3] A. Al-Masarwah, A.G. Ahmad, m-polar (α, β)-fuzzy ideals in BCK/BCI-algebras, Symmetry 2019, 11, 44; doi:10.3390/sym11010044.

- [4] M. Bakhshi, M.M. Zahedi, R.A. Borzooei, Fussy (positive, weak) implicative hyper BCKideals, Iranian Journal of Fuzzy Systems, 1(2) (2004), 63–79.
- [5] M. Bolurian, A. Hasankhani, Hyper BCK-algebra, Ratio Mathematica, 12 (1997), 97–106.
- [6] J. Chen, S. Li, S. Ma, X. Wang, *m-polar fuzzy sets: An extension of bipolar fuzzy sets*, Scientific World Journal Volume 2014, Article ID 416530, 8 pages.
- [7] Y.B. Jun, W.H. Shim, Fuzzy implicative hyper BCK-ideals of hyper BCK-algebras, International Journal of Mathematics and Mathematical Sciences, 29(2) (2001), 63–70.
- [8] Y.B. Jun, W.H. Shim, Fuzzy strong implicative hyper BCK-ideals of hyper BCK-algebras, Information Sciences, 170 (2005), 351361.
- Y.B. Jun, S.Z. Song, Hyper BCK-ideals based on soft set theory, Asian-European Journal of Mathematics, 9(3) (2016), 1650065 (12 pages).
- [10] Y.B. Jun, X.L. Xin, Scalar elements and hyperatoms of hyper-BCK-algebras, Scientiae Mathematicae, 2(3) (1999), 303–309.
- Y.B. Jun, X.L. Xin, Fuzzy hyper BCK-ideals of hyper BCK-algebras, Scientiae Mathematicae Japonicae, 53(2) (2001), 353–360.
- [12] Y.B. Jun, X.L. Xin, E.H. Roh, M.M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebras, Mathematica Japonica, 51(3) (2000), 493–498.
- [13] Y.B. Jun, M.M. Zahedi, X.L. Xin, R.A. Borzooei, On hyper BCK-algebras, Italian Journal of Pure and Applied Mathematics, 8 (2000), 127–136.
- [14] F. Marty, Sur une generalization de la notion de groups, 8th Congress Search Results Web results Mathematical Scandinaves, Stockholm, (1934), 45–49.
- [15] M. Mohseni Takallo, S.S. Ahn, R.A. Borzooei, Y.B. Jun, Multipolar fuzzy p-ideals of BCIalgebras, Mathematics 2019, 7, 1094; doi:10.3390/math7111094.